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PurposePurpose & State of the Art

Purpose

Fitting a statistical model for time to event data can be challenging in many instances.

Our analysis is influenced through censored data,missing values and correlation. In many cases we

have many variables P measured in few cases N. Therefore, we need to handle the problem of overfitting.
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Purpose

Fitting a statistical model for time to event data can be challenging in many instances.

Our analysis is influenced through censored data,missing values and correlation. In many cases we

have many variables P measured in few cases N. Therefore, we need to handle the problem of overfitting.

Events Per Variable (EPV) for regression analysis

u Harrell et al. suggested a minimum of 10 to 20 EPV
Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med.
1996;15(4):361–387.

u Peduzzi et al. performed a simulation study, and suggested that at least 10 EPV are needed to

maintain the validity of the model
Peduzzi et al., Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates, Journal of Clinical
Epidemiology, Volume 48, Issue 12, December 1995, Pages 1503-1510
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Cox RegressionPurpose & State of the Art

Cox Regression

model = coxph(Surv(survival_days90, survival_event90) ~ ., data=ds)
stargazer(model)

β coefficient σ(β)

Sex male −0.198 (0.309)
ICU admission reason surgical emergency 0.180 (0.549)

surgical planed 0.781 (0.642)
Lactate level 2-4 mmol/L 0.622 (0.451)

>4 mmol/L 1.079∗∗ (0.530)

.

.

.
Betablocker treatment continued −0.430 (0.334)

Observations 176
Log Likelihood −343.658
Score (Logrank) Test 113.940∗∗∗ (df = 49)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Overfitted!
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Shrinkage ProceduresPurpose & State of the Art

Shrinkage Procedures

Regularized parameter estimation

β̂(λ) = arg min
β

−2

N
`(β) + αλ

P∑
p=1

|βp|

ωp

+
1− α

2
λ

P∑
p=1

β2
p

ωp


u LASSO: α = 1

u Ridge: α = 0

u Elastic Net: 0 < α < 1

u Adaptive LASSO [1]: ωp =
∣∣∣β̂p∣∣∣−γ

, γ > 0

u Adaptive Elastic Net [2]: ωp =
∣∣∣β̂p∣∣∣−γ

, γ > 0
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LASSO in RPurpose & State of the Art

LASSO in R

library("glmnet")

x = model.matrix( ~ ., ds[,-(c(1:2))])
y = Surv(ds$survival_days90, ds$survival_event90)

# 10-fold cross-validation fit
cv.fit.lasso = cv.glmnet(x, y, family="cox", alpha=1)

# coefficients at minimum mean cross-validated error
c = coef(cv.fit.lasso, s="lambda.min")
colnames(x[,rowSums(c!=0)>0])

[1] "ChronischeErkrankungen2" "LeukozytenDiskret3"
[3] "SAPSIIScore" "APACHEIIScore"
[5] "Erste24hLaktatDiskret3" "EKerste24hDiskret2"
[7] "BBGruppe2"
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Criteria of model selection Balancing goodness of fit with simplicityPurpose & State of the Art

Criteria of model selection Balancing goodness of fit with simplicity

Some useful criteria:

1. Adjusted R2

2. Mallows’s Cp

3. Cross-validation

4. Akaike information criterion (AIC, AICc, CAIC)

5. Bayesian information criterion (BIC, BICc)

Model penalty

BIC = −2 log L(θ̂) + k log N, k estimated parameters, sample size N

β̂ = arg min
β

(−2`(β)+)
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All subset regressionPurpose & State of the Art

All subset regression

Computing all possible regression formulas and estimate (robustly) the coefficients of each model. The final

model will be selected according to model criteria.

u Assume 30 possible predictor variables. There exists 230 = 1, 073, 741, 824 subsets without
interaction terms.

u Doable?
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All subset regressionPurpose & State of the Art

All subset regression

Computing all possible regression formulas and estimate (robustly) the coefficients of each model. The final

model will be selected according to model criteria.

u Assume 30 possible predictor variables. There exists 230 = 1, 073, 741, 824 subsets without
interaction terms.

u Doable? Avg. 100ms computing time for each model

1242.8 CPU days CPU power > Energy > Costs!
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Stepwise Regression

Marcus Vollmer | Randomized Stepwise Regression 10 July 2018, 10/24



Classical Stepwise RegressionStepwise Regression

Classical Stepwise Regression
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Model mountains with local optimaStepwise Regression

Model mountains with local optima
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Randomized model selectionRandomized Stepwise Regression

Randomized model selection
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Randomized Stepwise RegressionRandomized Stepwise Regression

Randomized Stepwise Regression

Parameter set

u Initial model

- fixed

- arbitrary (proper distance)

u Specification

- of model selection criteria

- of the number of random models at each level

- of a ratio of add and remove terms

- of the maximal step length at each level

- of an abort criterion (max. level)

> Hyperparameter optimization

> Adaptive parameter setting
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Data originPerformance on real data

Data origin

The SepsisDialog

u Project at University Medicine Greifswald since 2008 [3]

u Improvement of diagnosis and therapy by

1. awareness of sepsis

2. advanced sepsis prophylaxis (e.g. hygiene)

3. training of sepsis definition

4. improvement of diagnostics
5. improvement of primary treatment

I early antibiotic administration
I immediate rehabilitation of the source of infection
I taking smears and blood cultures
I fast stabilization of the circular system

u Professional training of hospital medical staff an nurses
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Data originPerformance on real data

Data origin

u N = 793 patients with septic shock or severe sepsis (SEP-1)
from surgical intensive care unit (<4 missing values)

u Y: 90-day survival

u P = 89 predictor variables:

u Onset condition
- ’Sex’

- ’Age’

- ’Sepsis severeness’

- ’APACHEII Score’,’SAPSII Score’

- ’Lactate level’, serum blood parameters

- ’Preexisting antibiotic administration’

- chronic diseases …

u Treatment

- ’Appropriate antibiotic administration’

- ’Time to adequate antibiotic adm.’

- ’Smear test from source of infection’

- ’Crystalloid infusion first 6h’

- ’Antimycotics’

- other medication …
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LASSO resutsPerformance on real data

LASSO resuts
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All subset procedurePerformance on real data

All subset procedure
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Model steps of randomized model selectionPerformance on real data

Model steps of randomized model selection
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Model comparisonPerformance on real data

Model comparison
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SummaryPerformance on real data

Summary

Randomized Stepwise Regression

u The randomized strategy of the stepwise regression is a new model building strategy in generalized

linear models

u Procedure guarantees a better or equivalent model compared to the classical approach, when starting

with the same initial model

u Run-time is moderate (depending on parameter set)

u Finding of the optimal model not guaranteed (probability can be estimated through random subsets)
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Thank You for Your
Attention!
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Cox ModelAppendix

Cox Model

Cox Model with its Proportional Hazard Assumption

h(t, Xi) = h0(t)exp(Xiβ)

u h0 as baseline hazard function

u Xi = (xi1, . . . , xip) covariates for subject i

u βT = (β1, . . . , βp) coefficients vector← which has to be estimated

read: Healthcare Data Analytics, Reddy and Aggarwal, Chapman & Hall, 2015

is not time dependent!

Marcus Vollmer | Randomized Stepwise Regression 10 July 2018, 3/4



Cox ModelAppendix

Cox Model

Estimation of Regression Parameters

L(β) =

n∏
j=1

(
exp(Xjβ)∑
i∈Rj exp(Xiβ)

)δi

`(β) =

N∑
j=1

δj

Xjβ − log
∑
i∈Rj

exp(xiβ)


u δj is 0 for a censoring time, 1 otherwise

u Rj are the living individuals at time point j

Observed event

Patients at risk
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