

DZHK DEUTSCHES ZENTRUM FÜR HERZ-KREISLAUF-FORSCHUNG E.V.

A Convolutional Neural Network for ECG Annotation as the Basis for Classification of Cardiac Rhythms

Marcus Vollmer, Philipp Sodmann, Neetika Nath, Lars Kaderali Institute of Bioinformatics, University Medicine Greifswald

51th Statistical Computing

01 July 2019, Reisensburg b. Günzburg

Content

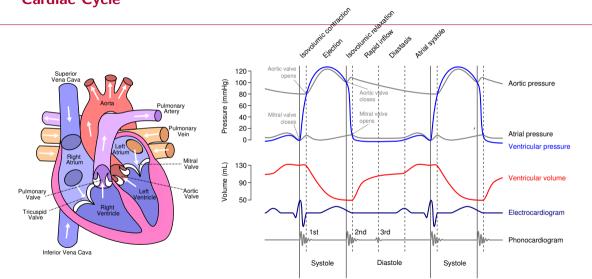
4 Summary & Outlook

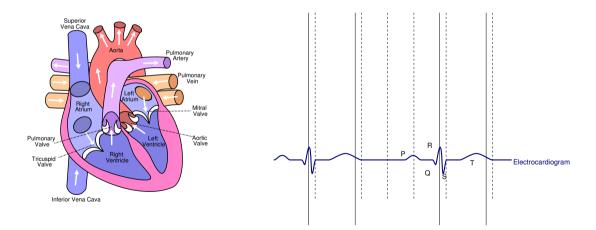
CNN for ECG Annotation | Marcus Vollmer

1. Motivation

1. Motivation

Cardiac Cycle

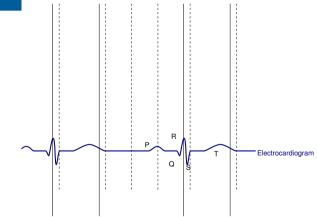




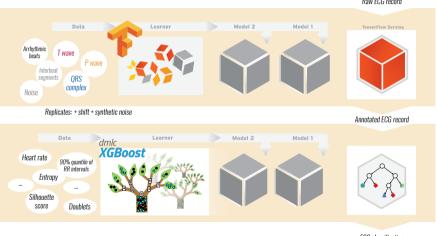
1. Motivation Cardiac Cycle

ECG segmentation

- Interval data used for
 - Heart rate determination
 - Heart rate variability analysis
 - Arrhythmia detection (long-QT syndrome, atrial fibrillation, ventricular arrhythmia)
- Manual inspection is time-consuming
- Only a few automated methods publicly available



A schematic representation of our workflow [1, 2]



Raw FCG record

ECG classification

Information gathering

Labeled input data to train the CNN:

- QT database [3]
 - 222,202 *R* peaks
 - 192,200 P waves
 - 256,966 T waves
 - 3,311,487 interbeat segments

Realistic noisy segments

 Noise stress test function of the WaveForm DataBase (WFDB) applied to clean recordings at different and very low signal-to-noise ratios [4, 5] MIT-BIH Arrhythmia Database [6]

- 106,112 *R* peaks
- 74,985 P waves labeled by Elgendi [7]
- 109,267 T waves labeled by Elgendi [7]
 - Extrasystoles labeled as *O*: 2,545 atrial premature beats, 7,127 premature ventricular contractions, 7,020 paced beats, 982 fusions of paced and normal beats, 8,070 left and 7,251 segments of right bundle branch block beats

Input layer

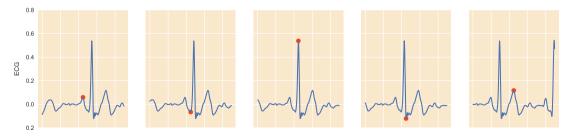
Labeled input data to train the CNN

- ECG segment consists of 450 samples (1500 ms)
- Normalized to a range between -1 to 1
- Data augmentation was performed shifting labels up to $\pm 3\,$ ms
- Adding gaussian noise (σ =0.02) for a better generalization and to reduce overfitting

Input layer

Labeled input data to train the CNN

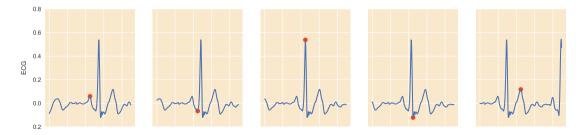
- ECG segment consists of 450 samples (1500 ms)
- Normalized to a range between -1 to 1
- Data augmentation was performed shifting labels up to $\pm 3\,\mathrm{ms}$
- Adding gaussian noise (σ =0.02) for a better generalization and to reduce overfitting



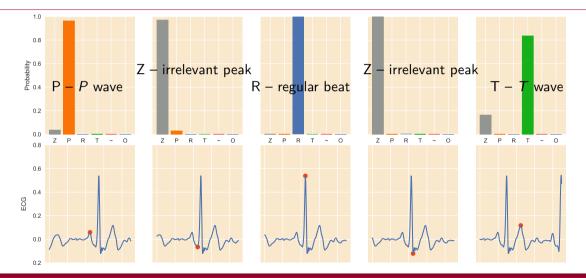
Input layer

Approximately **12,000,000 characteristic waveforms** served as **input volume**. The assigned **annotation codes of the midpoint peaks** in each ECG segment were used as **output volume**.

CNN architecture



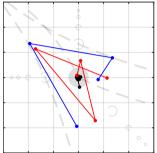
Activation functions of a regular ECG



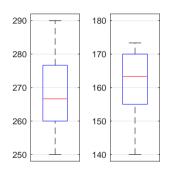
2. Methods

- Interval data: absolute values, percentiles, and interquartile ranges for *RR*, *RT*, and *PR* intervals
- **Entropy** of relative *RR* intervals (using standard deviation) Entropy on higher grades: considering a lag when computing relative *RR* intervals
- Atypical beats: absolute counts and percentage of extrasystoles with and without compensatory pause, doublets, triplets
- **Normalization**: adjusting interval data by heart rate (estimated by the 25% trimmed mean of *RR* intervals) or using relative intervals, defined as successive differences divided by their mean [8]
- **ECG morphology**: basic cluster characteristics like the silhouette score and distance information derived from k-Means and hierarchical clustering (average linkage, euclidean metric) on the basis of the cross-correlation for each pair of ECG segments

Feature extraction

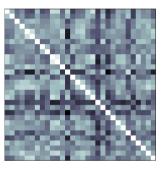


Atypical beat classification rr intervals and classification rules based on relations of successive intervals [9].



Interval data

Distribution of *RT* (left) and *PR* intervals (right) [ms].



ECG morphology

Cross-correlation matrix of ECG segments for beat classification. Once the features were extracted, gradient boosting decision trees were trained with these features on expert labeled data to classify the heart rhythm of ECG recordings:

Normal sinus rhythm (N)

Atrial fibrillation (A)

Alternative rhythm (O),

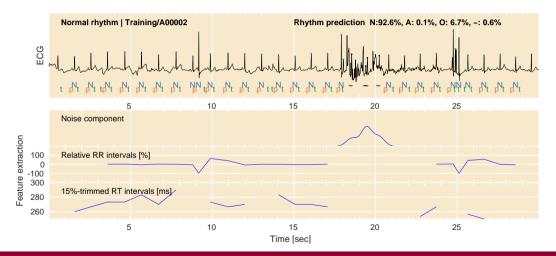
Too noisy to classify (\sim).

Since the training data is highly imbalanced, we selected the F_1 score as the arbitrary differentiable loss function to optimize the prediction.

3. Results

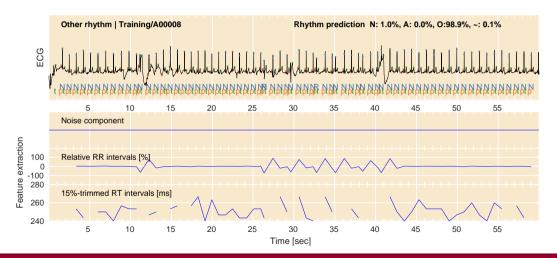
Dataset		Counts		TPR		PPV		
			Reference	Test	10 ms	50 ms	10 ms	50 ms
	R	CNN	87003	86243	0.922	0.977	0.930	0.985
QT		gqrs		87174	0.966	0.993	0.964	0.991
Q I	Ρ	CNN	78665	85616	0.868	0.922	0.796	0.846
	Т	CNN	86722	86530	0.807	0.879	0.802	0.874
	R	CNN	25028	25034	0.963	0.996	0.963	0.996
MIT-		gqrs		25372	0.959	0.981	0.946	0.968
BIH	ecg	puwave		16584	0.557	0.598	0.841	0.902
P-	Ρ	CNN	22108	24883	0.695	0.945	0.618	0.837
wave	ecg	puwave		9266	0.271	0.345	0.645	0.824
gqrs+ecgpuwave			13092	0.351	0.477	0.671	0.912	

Example ECG recording with normal heart rhythm

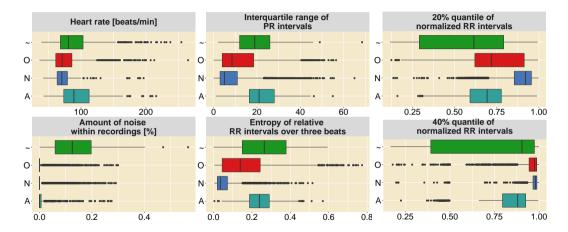


3. Results

3. Results **Example ECG recording with other heart rhythm**



3. Results Feature distributions of heart rhythm classes



Gain Index

Rhythm classes trained on avg. 30s single lead ECG recordings (LA-RA) provided by AliveCor through the PhysioNet/CinC Challenge 2017 [10]. PhysioNet.org

Post-challenge entry:

	Recordings	Overall	Normal	Atrial Fi- brillation	Other rhythm	Noisy
Training set	8528	0.99	0.99	0.99	0.98	0.99
Test set	3658	0.82	0.91	0.82	0.74	-

4. Summary & Outlook

4. Summary & Outlook CNN usage for ECG segmentation

Strength

- Fully automated
- Real-time applicable
- Database expandable

Limitations

- Extendable to other ECG characteristicsAnnotation accuracy expressed as stochastic vectors
- Accuracy depends strongly on labeled input data
- Abnormal waveforms, which are not trained, cannot be correctly annotated

Future ideas

- Noise robust search for local extrema
- Use of different CNNs for P,T and R peak location (multi-step approach)
- Use of heart rate normalized ECG segments
- Prior knowledge as input layer (e.g. known R peaks, PQRT locations of previous heart beat)

Thank You for Your Attention

5. Appendix

5. Appendix

- M. Vollmer, P. Sodmann, L. Caanitz, N. Nath, and L. Kaderali, "Can Supervised Learning Be Used to Classify Cardiac Rhythms?," in 2017 Computing in Cardiology (CinC), vol. 44, pp. 1–4, IEEE, 2017.
- P. Sodmann, M. Vollmer, N. Nath, and L. Kaderali, "A convolutional neural network for ecg annotation as the basis for classification of cardiac rhythms," *Physiological measurement*, vol. 39, no. 10, p. 104005, 2018.
- P. Laguna, R. G. Mark, A. Goldberg, and G. B. Moody, "A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG," in *Computers in Cardiology*, pp. 673–676, 1997.
- G. B. Moody, *WFDB applications guide*.

Harvard-MIT Division of Health Sciences and Technology, 10 ed., 2003.

- M. Vollmer, "Noise Resistance of Several Top-Scored Heart Beat Detectors," in *Computing in Cardiology*, vol. 44, p. in press, 2017.
- G. B. Moody and R. G. Mark, "The impact of the MIT-BIH arrhythmia database," *IEEE Engineering in Medicine and Biology Magazine*, vol. 20, no. 3, pp. 45–50, 2001.
- M. Elgendi, B. Eskofier, and D. Abbott, "Fast T Wave Detection Calibrated by Clinical Knowledge with Annotation of P and T Waves," *Sensors*, vol. 15, no. 7, pp. 17693–17714, 2015.
- M. Vollmer, "A Robust, Simple and Reliable Measure of Heart Rate Variability using Relative RR Intervals," in *Computing in Cardiology*, vol. 42, pp. 609–612, 2015.
- M. Vollmer, "Arrhythmia Classification in Long-Term Data Using Relative RR Intervals," in *Computing in Cardiology*, vol. 44, p. in press, 2017.

5. Appendix Literature III

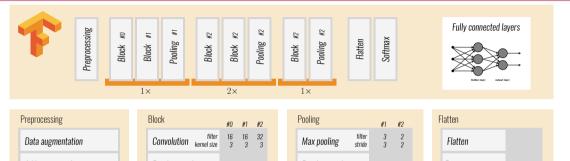
- G. Clifford, C. Liu, B. Moody, I. Silva, Q. Li, A. Johnson, and R. Mark, "AF Classification from a Short Single Lead ECG Recording: the PhysioNet Computing in Cardiology Challenge 2017," in *Computing in Cardiology*, vol. 44, 2017.
- P. T. Baker, S. Caudill, K. A. Hodge, D. Talukder, C. Capano, and N. J. Cornish, "Multivariate classification with random forests for gravitational wave searches of black hole binary coalescence," *Physical Review D*, vol. 91, no. 6, p. 062004, 2015.

5. Appendix Image Sources

Heart illustration: Wikimedia Commons | Wapcaplet Cardiac cycle: Wikimedia Commons | DestinyQx/DanielChangMD TensorFlow logo by Wikimedia/FlorianCassayre (CC-BY-SA 4.0) TensorFlow serving chart adapted from www.tensorflow.org/serving/ (CC-BY-SA 3.0) Random Forest illustration adapted from [11].

5. Appendix

Architecture of the CNN



Adding resampling noise

Discrete wavelet transform

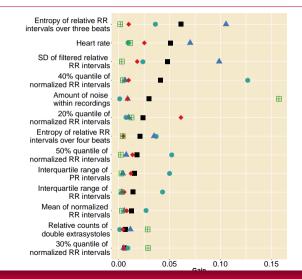
Block		#0	#1	#2
Convolution	filter kernel size	16 3	16 3	32 3
Batch normali				
Activation	Tanh PReLu PReLu			
Dropout	30%	10%	10%	

Pooling	#1	#2	
Max pooling	filter stride	3 3	2 2
Batch normaliz			
Activation	PReLu	PReLu	
Dropout		10%	10%

Flatten	
Flatten	
Dense	420 neurons
Activation	PReLu
Dropout	10%
Dense	11 neurons

5. Appendix

Overall importance based on Gain index



CNN for ECG Annotation | Marcus Vollmer

5. Appendix Certainty of rhythm classification



The left plot shows the probabilities of our estimates and a logistic regression fit. The right plot shows the certainty of the estimate based on the difference between the two highest probabilities of the stochastic vector.