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ECG segmentation

t Interval data used for
- Heart rate determination
- Heart rate variability analysis
- Arrhythmia detection

(long-QT syndrome, atrial
fibrillation, ventricular
arrhythmia)

t Manual inspection is
time-consuming

t Only a few automated methods
publicly available
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A schematic representation of our workflow [1, 2]
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2. Methods

Information gathering

Labeled input data to train the CNN:

u QT database [3]
- 222,202 R peaks
- 192,200 P waves
- 256,966 T waves
- 3,311,487 interbeat segments

u Realistic noisy segments
- Noise stress test function of the

WaveForm DataBase (WFDB)
applied to clean recordings at
different and very low
signal-to-noise ratios [4, 5]

u MIT-BIH Arrhythmia Database [6]
- 106,112 R peaks
- 74,985 P waves labeled by Elgendi [7]
- 109,267 T waves labeled by Elgendi [7]
- Extrasystoles labeled as O:

2,545 atrial premature beats,
7,127 premature ventricular contractions,
7,020 paced beats,
982 fusions of paced and normal beats,
8,070 left and 7,251 segments of right
bundle branch block beats
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2. Methods

Input layer

Labeled input data to train the CNN
u ECG segment consists of 450 samples (1500 ms)
u Normalized to a range between -1 to 1
u Data augmentation was performed shifting labels up to ±3 ms
u Adding gaussian noise (σ=0.02) for a better generalization and to reduce overfitting
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Input layer
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Approximately 12,000,000 characteristic waveforms served as input volume.
The assigned annotation codes of the midpoint peaks in each ECG segment were
used as output volume.

CNN architecture
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2. Methods

Activation functions of a regular ECG
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2. Methods

Feature extraction

u Interval data: absolute values, percentiles, and interquartile ranges for RR, RT , and
PR intervals
u Entropy of relative RR intervals (using standard deviation)

Entropy on higher grades: considering a lag when computing relative RR intervals
u Atypical beats: absolute counts and percentage of extrasystoles with and without

compensatory pause, doublets, triplets
u Normalization: adjusting interval data by heart rate (estimated by the 25% trimmed

mean of RR intervals) or using relative intervals, defined as successive differences
divided by their mean [8]
u ECG morphology: basic cluster characteristics like the silhouette score and distance

information derived from k-Means and hierarchical clustering (average linkage,
euclidean metric) on the basis of the cross-correlation for each pair of ECG segments
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2. Methods

Feature extraction

Atypical beat classification
rr intervals and classification
rules based on relations of
successive intervals [9].
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2. Methods

Boosting trees for heart rhythm classification

Once the features were extracted, gradient boosting decision trees were trained with
these features on expert labeled data to classify the heart rhythm of ECG recordings:

u Normal sinus rhythm (N)
u Atrial fibrillation (A)
u Alternative rhythm (O),
u Too noisy to classify (∼).

Since the training data is highly imbalanced, we selected the F1 score as the arbitrary
differentiable loss function to optimize the prediction.
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Annotation performance

Dataset Counts TPR PPV
Reference Test 10 ms 50 ms 10 ms 50 ms

QT

R CNN 87003 86243 0.922 0.977 0.930 0.985
gqrs 87174 0.966 0.993 0.964 0.991

P CNN 78665 85616 0.868 0.922 0.796 0.846
T CNN 86722 86530 0.807 0.879 0.802 0.874

MIT-
BIH
P-
wave

R CNN 25028 25034 0.963 0.996 0.963 0.996
gqrs 25372 0.959 0.981 0.946 0.968

ecgpuwave 16584 0.557 0.598 0.841 0.902

P CNN 22108 24883 0.695 0.945 0.618 0.837
ecgpuwave 9266 0.271 0.345 0.645 0.824

gqrs+ecgpuwave 13092 0.351 0.477 0.671 0.912
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3. Results

Example ECG recording with normal heart rhythm
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3. Results

Example ECG recording with other heart rhythm
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3. Results

Feature distributions of heart rhythm classes
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3. Results

Classification performance

Rhythm classes trained on avg. 30 s single lead ECG recordings (LA-RA) provided by
AliveCor through the PhysioNet/CinC Challenge 2017 [10]. PhysioNet.org

Post-challenge entry:

Recordings Overall Normal Atrial Fi-
brillation

Other
rhythm

Noisy

Training set 8528 0.99 0.99 0.99 0.98 0.99
Test set 3658 0.82 0.91 0.82 0.74 -

Certainty of rhythm classification

 CNN for ECG Annotation | Marcus Vollmer 18
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4. Summary & Outlook

CNN usage for ECG segmentation

Strength

u Fully automated
u Real-time applicable
u Database expandable

u Extendable to other ECG characteristics
u Annotation accuracy expressed as stochastic

vectors

Limitations
u Accuracy depends strongly on labeled input data
u Abnormal waveforms, which are not trained, cannot be correctly annotated
Future ideas
u Noise robust search for local extrema
u Use of different CNNs for P,T and R

peak location (multi-step approach)

u Use of heart rate normalized ECG segments
u Prior knowledge as input layer (e.g. known R

peaks, PQRT locations of previous heart beat)
 CNN for ECG Annotation | Marcus Vollmer 20
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Image Sources

Heart illustration: Wikimedia Commons | Wapcaplet
Cardiac cycle: Wikimedia Commons | DestinyQx/DanielChangMD
TensorFlow logo by Wikimedia/FlorianCassayre (CC-BY-SA 4.0)
TensorFlow serving chart adapted from www.tensorflow.org/serving/ (CC-BY-SA 3.0)
Random Forest illustration adapted from [11].
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Architecture of the CNN
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Overall importance based on Gain index
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Certainty of rhythm classification

0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of highest test class

prediction
Wrong

prediction
Correct

A
N
O
~

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Difference to second highest test class

  0%

 25%

 50%

 75%

100%

The left plot shows the probabilities of our estimates and a logistic regression fit.
The right plot shows the certainty of the estimate based on the difference between the
two highest probabilities of the stochastic vector.
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