Universitätsmedizin
 $G R E$ I F S W A L D

Estimation of Sample Size and Power for Dunnett's Testing Setups with Unequal Effect Sizes

Marcus Vollmer
Institute of Bioinformatics, University Medicine Greifswald
Adaptive Designs and Mutiple Testing Procedures
04 October 2018, Bremen

Content

1 Sample Size Estimation
2 Dunnett's Test
3 Idea of unbalanced testing
4 What is the optimal set of sample sizes?
5 A case example for animal test proposals
6 How to organize an intelligent search for an optimal set of group sizes?

1. Sample Size Estimation

The three Rs

Principles were developed over 50 years ago as a framework for humane animal research

Replacement

Methods which avoid or replace the use of animals

Reduction

Methods which minimise the number of animals used per experiment

Refinement

Methods which minimise the suffering and improve animal welfare

The three Rs

Principles were developed over 50 years ago as a framework for humane animal research
Replacement
Methods which avoid
or replace the use of
animals

Reduction

Methods which minimise the number of animals used per experiment

Refinement

Methods which minimise the suffering and improve animal welfare

German animal protection law (came into force in 1972)

- duty of disclosure 13%
prescribed by law (e.g. approval of pharmaceuticals, routine test of vaccines)
- subject to approval 87%

Administrative regulation for execution of animal protection law

8.3 The animal welfare officer should ensure, that appropriate biometrical methods will be deployed during the planning of the experimental project.

German animal protection law (came into force in 1972)

- duty of disclosure 13%
prescribed by law (e.g. approval of pharmaceuticals, routine test of vaccines)
- subject to approval 87\%

Administrative regulation for execution of animal protection law

14.1.3. The commission have to support the competent authority about their decision to approve animal experiments; in their statement they should comment in particular, whether it is scientifically
substantiated, that [. . .] no more animals were included in panning of the experiment than essential, to answer the question in consideration of biometrical methods.

Sample Size Estimation in \mathbf{R}

R:pwr

Function	Coverage
pwr.2p.test	Two proportions (equal n)
pwr.2p2n.test	Two proportions (unequal n)
pwr.anova.test	Balanced one way ANOVA
pwr.chisq.test	Chi-square test
pwr.f2.test	General linear model
pwr.p.test	Proportion (one sample)
pwr.r.test	Correlation
pwr.t.test	T-tests (one sample, 2 sample, paired)
pwr.t2n.test	T-test (two samples with unequal n)

2. Dunnett's Test

Multiple comparison test by Charles Dunnett (1955)

- Post-hoc-Test after ANOVA
- Compare k treatment arms against a control group
$\mathrm{H}_{0 \mathrm{i}}: \mu_{\mathrm{i}}=\mu_{0}$
- Similar to performing multiple t -tests
- Designed to hold the family-wise error rate FWER=P(number of falsely rejected $\mathrm{H}_{0} \geq 1$) $\leq \alpha$
- General rule (same effect size, equal variance):
$\frac{n_{0}}{n} \approx \sqrt{k} \frac{\sigma_{0}}{\sigma}$
R :mult comp and R :DTK Performing the special testing problem with unequal group sizes. The computation of the p-values includes the consideration of a multidimensional t-distribution and the adjustment for multiple testing. A procedure for sample size estimation is missing.

R:DunnettTests Conducting sample size calculation, but only with identical treatment effect size and pre-specified sample allocation ratio. In other situations, simulation-based evaluation is suggested, which needs great computational effort.

Available methods in \mathbf{R}

Power calculation with R:DunnettTests

```
library(DunnettTests)
#Compare group means of four treatment arms to a control arm (upper one-sided
    tests)
k = 4 # Number of treatment arms
mu = 2 # Assumed mean of each treatment arm
mu0 = 1 # Assumed mean of the control arm
n = 20
n0}=2
sigma = 1
df = n*k+n0-k-1
# get power of the test
13(power = powDT(r=k, k, mu, mu0, n, n0, "means", sigma, df, testcall="SD"))
```

[1] 0.7999448

Available methods in \mathbf{R}

Sample size calculation with R:DunnettTests

```
\# calculate sample sizes to achive the power
nvDT (ratio=n/n0, power=0.8, r=k, k, mu, mu0, "means", sigma, dist="zdist",
    testcall="SD")
```

```
$`least sample size required in each treatment groups`
[1] 20
$`least sample size required in the control group`
[1] 20
```


Available methods in \mathbf{R}

Dunnett's Test with R:multcomp

Implemented methods control the family-wise error rate
FWER=P(number of falsely rejected $\mathrm{H}_{0} \geq 1$) $\leq \alpha$

```
x = c(rnorm(n0,mu0,sigma), rnorm(n,mu,sigma), rnorm(n,mu,sigma), rnorm(n,mu,
    sigma), rnorm(n,mu,sigma))
f = gl.unequal(n=k+1, k=c(n0,n,n,n,n))
library (multcomp)
Dunnet = glht(aov(x~f, data.frame(f,x)), linfct=mcp(f="Dunnett"))
summary(Dunnet)
```


Available methods in \mathbf{R}

Dunnett's Test with R:multcomp

```
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Dunnett Contrasts
Fit: aov(formula = x ~ f, data = data.frame(f, x))
Linear Hypotheses:
    Estimate Std. Error t value Pr(>|t|)
    2 - 1 == 0 1.0462 0.3121 3.352 0.00449 **
    3-1 == 0 1.0637 0.3121 3.408 0.00357 **
    4-1 == 0 1.4444 0.3121 4.628 < 0.001 ***
    5-1 == 0 1.1007 0.3121 3.527 0.00243 **
    Signif. codes: 0 ''*** 0.001 ''** 0.01 ''* 0.05 ''. 0.1 ', 1
(Adjusted p values reported -- single-step method)
```


3. Idea of unbalanced testing

Balanced vs. unbalanced sample sizes

Balanced vs. unbalanced sample sizes

$$
t=\frac{\bar{x}_{0}-\bar{x}_{i}}{\sigma \sqrt{\frac{1}{n_{0}}+\frac{1}{n_{i}}}}=\frac{\Delta \bar{x}}{\sigma} \frac{1}{\sqrt{\frac{2}{12}}}=2.45 \frac{\Delta \bar{x}}{\sigma}
$$

$$
t=\frac{\bar{x}_{0}-\bar{x}_{i}}{\sigma \sqrt{\frac{1}{18}+\frac{1}{10}}}=2.54 \frac{\Delta \bar{x}}{\sigma}
$$

Balanced vs. unbalanced sample sizes

$$
t=\frac{\bar{x}_{0}-\bar{x}_{i}}{\sigma \sqrt{\frac{1}{n_{0}}+\frac{1}{n_{i}}}}=\frac{\Delta \bar{x}}{\sigma} \frac{1}{\sqrt{\frac{2}{12}}}=2.45 \frac{\Delta \bar{x}}{\sigma} \quad t=\frac{\bar{x}_{0}-\bar{x}_{i}}{\sigma \sqrt{\frac{1}{18}+\frac{1}{10}}}=2.54 \frac{\Delta \bar{x}}{\sigma}
$$

Balanced vs. unbalanced sample sizes

$$
t=\frac{\bar{x}_{0}-\bar{x}_{i}}{\sigma \sqrt{\frac{1}{n_{0}}+\frac{1}{n_{i}}}}=\frac{\Delta \bar{x}}{\sigma} \frac{1}{\sqrt{\frac{2}{12}}}=2.45 \frac{\Delta \bar{x}}{\sigma}
$$

$$
\sqrt{\frac{1}{12}+\frac{1}{12}}=\sqrt{\frac{1}{6}}=\sqrt{\frac{1}{18}+\frac{1}{9}}
$$

\square save
Methods which minimise the number of animals used per experiment

4. What is the optimal set of sample sizes?

Maximal power estimated by random sampling

- All possible partition
sets $\left\{n_{0}, n\right\}$ with
$N=n_{0}+k \cdot n$ included

Optimal sample size for unequal group sizes ($\mathrm{k}=4$)

Results

Balanced partitions sets compared against imbalanced partitions

- Difference in total sample size at 80% power

- Balanced partitions sets compared against imbalanced partitions
- Difference in total sample size at 80% power
- Reduction increases with number of treatment groups k

5. A case example for animal test proposals

Passive immunization with glycoforms of IgG

Immunoglobulin G immunization of pneumococcal infected mice Measurements from IVIS Spectrum Imaging

Assumptions

- Negative control - Pre-immune IgG: $\mu_{0}=4.58$
- Negative control - Post-immune: $\mu_{1}=5.73$
- 3 Glycoforms: $\mu_{2,3,4}=3.57$
- Equal variance: $\sigma=0.96$

Passive immunization with glycoforms of IgG

```
list.a = seq( }32,34,1
list.b = seq(10,12,1)
list.c = seq(18,20,1)
Power = expand.grid(a=list.a, b=list.b, c=list.c)
Power$n = Power$a + Power$b + 3*Power$c
Power$p2 = NA
Power$p3 = NA
Power$p4 = NA
Power$p5 = NA
rep = 1000
```


Passive immunization with glycoforms of IgG

```
for (j in 1:NROW(Power)) {
    a = Power$a[j]
    b = Power$b[j]
    c = Power$c[j]
    ng = c(a,b,c,c,c)
    p = matrix(0,rep,length(ng)-1);
    for (i in 1:rep) {
            x = c(rnorm(ng[1], mu_IgG, sd_IgG), rnorm(ng[2], mu_Negativ_PBS, sd_
                    Negativ_PBS), rnorm(ng[3], mu_glycoIgG, sd_glycoIgG), rnorm(ng[3],
                    mu_glycoIgG, sd_glycoIgG), rnorm(ng[3], mu_glycoIgG, sd_glycoIgG))
            f = gl.unequal(n=5, k=ng)
            Dunnet = glht(aov(x~f, data.frame(f,x)), linfct=mcp(f="Dunnett"))
            S = summary(Dunnet)
            p[i,] = S$test$pvalues
        }
        Power[j, 5:(5+NCOL(p)-1)] = colSums(p<.05)/rep
}
```


Passive immunization with glycoforms of IgG

```
31 Power$n = Power$a + Power$b + 3*Power$c
32 Power$power = rowMeans(Power[,5:8])
33 View(Power[order(Power$power),])
```

	a	b	c	n	p 2	p 3	p 4	p 5	power
11	33	10	19	100	0.812	0.788	0.787	0.795	0.79550
9	34	12	18	100	0.851	0.785	0.780	0.768	0.79600
18	34	12	19	103	0.868	0.772	0.762	0.783	0.79625
22	32	11	20	103	0.798	0.809	0.800	0.789	0.79900
20	33	10	20	103	0.776	0.808	0.807	0.812	0.80075
17	33	12	19	102	0.843	0.779	0.797	0.785	0.80100
21	34	10	20	104	0.822	0.813	0.793	0.777	0.80125
12	34	10	19	101	0.811	0.791	0.784	0.827	0.80325
15	34	11	19	102	0.829	0.802	0.798	0.785	0.80350
23	33	11	20	104	0.814	0.804	0.803	0.812	0.80825
16	32	12	19	101	0.862	0.792	0.800	0.785	0.80975
26	33	12	20	105	0.864	0.803	0.795	0.806	0.81700
24	34	11	20	105	0.812	0.807	0.825	0.831	0.81875
25	32	12	20	104	0.842	0.814	0.828	0.810	0.82350
27	34	12	20	106	0.853	0.794	0.815	0.833	0.82375

Passive immunization with glycoforms of IgG

```
31 Power\$n = Power\$a + Power\$b + 3*Power\$c
32 Power\$power = rowMeans (Power[,5:8])
33 View (Power[order (Power\$power), ])
```

	a	b	c	n	p 2	p 3	p 4	p 5	power
11	33	10	19	100	0.812	0.788	0.787	0.795	0.79550
9	34	12	18	100	0.851	0.785	0.780	0.768	0.79600
18	34	12	19	103	0.868	0.772	0.762	0.783	0.79625
22	32	11	20	103	0.798	0.809	0.800	0.789	0.79900
20	33	10	20	103	0.776	0.808	0.807	0.812	0.80075
17	33	12	19	102	0.843	0.779	0.797	0.785	0.80100
21	34	10	20	104	0.822	0.813	0.793	0.777	0.80125
12	34	10	19	101	0.811	0.791	0.784	0.827	0.80325
15	34	11	19	102	0.829	0.802	0.798	0.785	0.80350
23	33	11	20	104	0.814	0.804	0.803	0.812	0.80825
16	32	12	19	101	0.862	0.792	0.800	0.785	0.80975
26	33	12	20	105	0.864	0.803	0.795	0.806	0.81700
24	34	11	20	105	0.812	0.807	0.825	0.831	0.81875
25	32	12	20	104	0.842	0.814	0.828	0.810	0.82350
27	34	12	20	106	0.853	0.794	0.815	0.833	0.82375

Passive immunization with glycoforms of IgG

```
31 Power\$n = Power\$a + Power\$b + 3*Power\$c
32 Power\$power = rowMeans (Power [,5:8])
33 View (Power[order (Power\$power), ])
```

	a	b	c	n	p 2	p 3	p 4	p 5	power
11	33	10	19	100	0.812	0.788	0.787	0.795	0.79550
9	34	12	18	100	0.851	0.785	0.780	0.768	0.79600
18	34	12	19	103	0.868	0.772	0.762	0.783	0.79625
22	32	11	20	103	0.798	0.809	0.800	0.789	0.79900
20	33	10	20	103	0.776	0.808	0.807	0.812	0.80075
17	33	12	19	102	0.843	0.779	0.797	0.785	0.80100
21	34	10	20	104	0.822	0.813	0.793	0.777	0.80125
12	34	10	19	101	0.811	0.791	0.784	0.827	0.80325
15	34	11	19	102	0.829	0.802	0.798	0.785	0.80350
23	33	11	20	104	0.814	0.804	0.803	0.812	0.80825
16	32	12	19	101	0.862	0.792	0.800	0.785	0.80975
26	33	12	20	105	0.864	0.803	0.795	0.806	0.81700
24	34	11	20	105	0.812	0.807	0.825	0.831	0.81875
25	32	12	20	104	0.842	0.814	0.828	0.810	0.82350

6. How to organize an intelligent search for an optimal set of group sizes?

The aim is to determine the sample sizes for multiple treatment groups with different effect sizes (different means and unequal variances). A necessary statistical power of 80% is expected. Ideas for finding the minimal set of group sizes in Monte Carlo experiments:

Random search

Start with initial size
Sample new position based on derived statistical power

Modified grid search

Evaluate given parameter sets - start with coarse grid - refine grid - increase accuracy (number of simulations)

Topological concept

Bottom-up or top-down procedure using the topology of different sets of sample sizes

- Illustration of integer partitions with
$N=n_{0}+n_{1}+n_{2}=19$
$\rightarrow\left(n_{0}, n_{1}, n_{2}\right)$ are individual group sizes

- Illustration of integer partitions with
$N=n_{0}+n_{1}+n_{2}=19$
- $\left(n_{0}, n_{1}, n_{2}\right)$ are individual group sizes
- $(6,5,8)$ has the following neighbors in the lower integer partition with $N=18$:

$$
(5,5,8),(6,4,8),(6,5,7)
$$

For those partitions we already know that the power is less than the power for $(6,5,8)$.

$$
N=18
$$

$$
N=17
$$

Closing remarks

- It needs roughly 500,000 samples to estimate the power precisely up to the first decimal place
- An intelligent search at different levels of integer partitions of size N can massively reduce the computational size
- It is the objective of constructing a random search with the use of topological relations and precision levels
... work in progress ...
- 岁 1911

Thank You for Your Attention!

7. Appendix

Simulation study on a computing cluster

```
dunnett_multisize_power <- function(n0, n, cohens_d, m=1e5, wr=FALSE){
    require(multcomp)
    require(DTK)
    mu_ctr = 0
    sd_ctr = 1
    sd_trm = 1
    mu_trm = cohens_d
    ng}=\textrm{c}(\textrm{n}0,\textrm{n}
    p = matrix (0,m,length(ng)-1)
```


Simulation study on a computing cluster

```
#!/usr/bin/Rscript
#### To define a name for the job (will be displayed in qstat, pbstop output):
#PBS -N equal_sizes
#PBS -m abe
#PBS -M marcus.vollmer@uni-greifswald.de,jan.zude@uni-greifswald.de
### Ressources requested: Memory and Time
#PBS -1 nodes=1:ppn=40, cput=3500:00:00
###, mem=40gb, pmem=1 gb
### Following are the R-commands to execute.
setwd("/mnt/staff/vollmer/dunnett")
source("dunnett_multisize_power.R")
```


