A circular distribution family and tests for independence

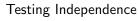
Marcus Vollmer

Department of Mathematics and Computer Science University of Greifswald

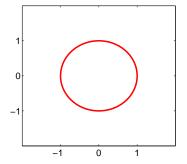
COPULÆ IN MATHEMATICAL and QUANTITATIVE FINANCE

Kraków 07-11-2012

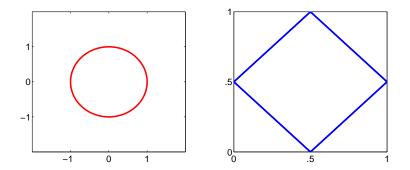
A Circular Distribution Family



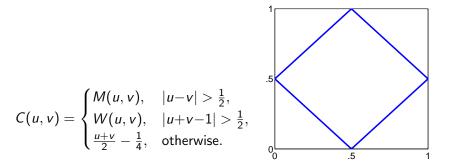
Nelsen: $\Theta \sim U(0, 2\pi)$, ho = 1



Nelsen: $\Theta \sim U(0,2\pi)$, ho=1



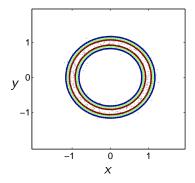
Nelsen: $\Theta \sim U(0, 2\pi)$, $\rho = 1$



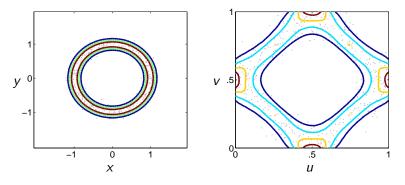
Nelsen: $\Theta \sim U(0,2\pi)$, ho=1

$$C(u,v) = \begin{cases} M(u,v), & |u-v| > \frac{1}{2}, \\ W(u,v), & |u+v-1| > \frac{1}{2}, \\ \frac{u+v}{2} - \frac{1}{4}, & \text{otherwise.} \end{cases}$$

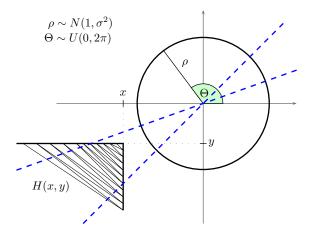
Vollmer: $\Theta \sim U(0, 2\pi)$, $\rho \sim N(1, \sigma^2)$,

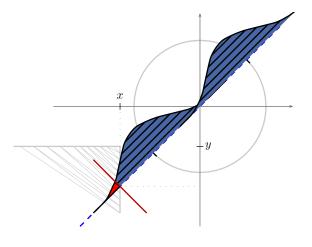


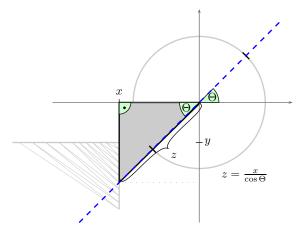
Vollmer: $\Theta \sim U(0, 2\pi)$, $\rho \sim N(1, \sigma^2)$,

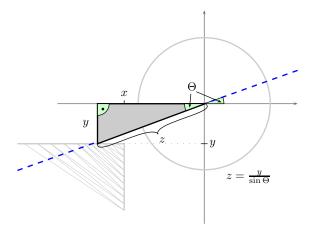


 $\sigma = 0.00..0.37$









CDF case: x, y < 0

$$H_{\sigma}(x,y) = \frac{1}{2\pi} \int_{0}^{\cot\left(\frac{y}{x}\right)} \Phi\left(\frac{1}{\sigma}\left(\frac{y}{\sin\Theta} - 1\right)\right) + \Phi\left(\frac{1}{\sigma}\left(\frac{y}{\sin\Theta} + 1\right)\right) d\Theta + \frac{1}{2\pi} \int_{\cot\left(\frac{y}{x}\right)}^{\frac{\pi}{2}} \Phi\left(\frac{1}{\sigma}\left(\frac{x}{\cos\Theta} - 1\right)\right) + \Phi\left(\frac{1}{\sigma}\left(\frac{x}{\cos\Theta} + 1\right)\right) d\Theta$$

CDF case: x, y < 0

Numerical calculation:

choose equidistant segmentation of $\Theta \in [0,2\pi]$ with step size d

$$H_{\sigma}(x,y) = \frac{1}{2\pi} \int_{0}^{\cot\left(\frac{y}{x}\right)} \Phi\left(\frac{1}{\sigma}\left(\frac{y}{\sin\Theta} - 1\right)\right) + \Phi\left(\frac{1}{\sigma}\left(\frac{y}{\sin\Theta} + 1\right)\right) d\Theta + \frac{1}{2\pi} \int_{\cot\left(\frac{y}{x}\right)}^{\frac{\pi}{2}} \Phi\left(\frac{1}{\sigma}\left(\frac{x}{\cos\Theta} - 1\right)\right) + \Phi\left(\frac{1}{\sigma}\left(\frac{x}{\cos\Theta} + 1\right)\right) d\Theta$$

CDF case: x, y < 0

Numerical calculation:

choose equidistant segmentation of $\Theta \in [0,2\pi]$ with step size d

$$\begin{aligned} H_{\sigma}(x,y) \approx & \frac{2\pi}{d} \sum_{\Theta=0,d,\dots,\cot\left(\frac{y}{x}\right)} \left[\Phi\left(\frac{1}{\sigma}\left(\frac{y}{\sin\Theta}-1\right)\right) + \Phi\left(\frac{1}{\sigma}\left(\frac{y}{\sin\Theta}+1\right)\right) \right] + \\ & \frac{2\pi}{d} \sum_{\Theta=\cot\left(\frac{y}{x}\right),\dots,\frac{\pi}{2}} \left[\Phi\left(\frac{1}{\sigma}\left(\frac{x}{\cos\Theta}-1\right)\right) + \Phi\left(\frac{1}{\sigma}\left(\frac{x}{\cos\Theta}+1\right)\right) \right] \end{aligned}$$

CDF: all cases

Other cases are as easy as for $x, y \leq 0$.

In general I have a MATLAB function circfamcdf(x,y,sigma) based on segmentation and using the trigonometric functions.

The marginal cdfs $F_{\sigma}(y)$ and $G_{\sigma}(x)$ are due to the limits $y \to \infty$ or $x \to \infty$ of $H_{\sigma}(x, y)$ and

$$F_{\sigma}(y) = G_{\sigma}(x) = \lim_{y \to \infty} H_{\sigma}(x, y)$$

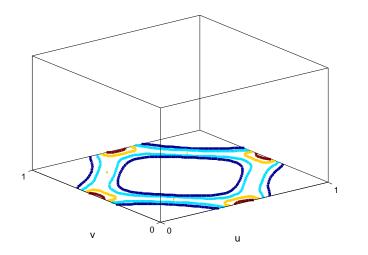
Calculation of C(u, v)

$$C_{\sigma}(u,v) = H_{\sigma}(F_{\sigma}^{-1}(u),F_{\sigma}^{-1}(v))$$

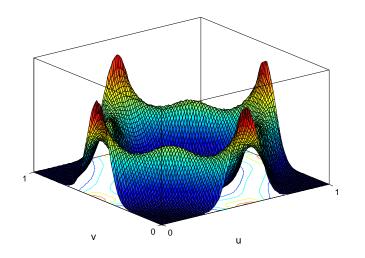
Instruction

- Estimate $H_{\sigma}(x, y)$ (Segmentation / Trigonometric funct.)
- 2 Compute $F_{\sigma} = \lim_{y \to \infty} H(x, y)$
- Stimate the inverse function of F (fzero-Method)
- $\textbf{O} \quad \mathsf{Compute} \ C_\sigma(u,v) \ \mathsf{on a grid} \in [0,1] \times [0,1]$

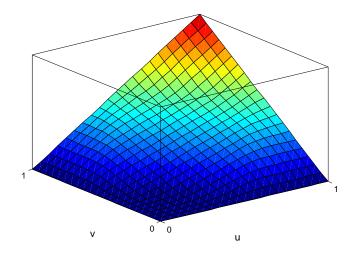
The Copula of the Circular Distribution Family



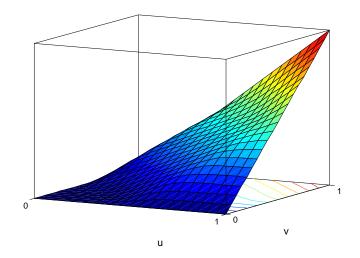
The Copula of the Circular Distribution Family



The Copula of the Circular Distribution Family

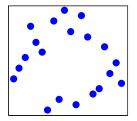


The Copula of the Circular Distribution Family



Testing Independence

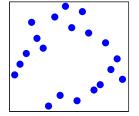
How to test for independence?

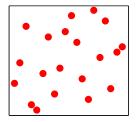


Sample of the Circular distribution family

Testing Independence

How to test for independence?

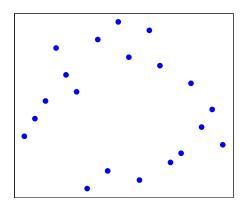




Sample of the Circular distribution family

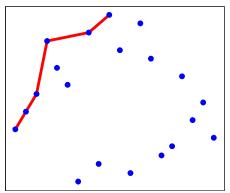
Independent sample Uniform distribution

Recent ideas: LIS



Recent ideas: LIS

Test statistic based on Longest Increasing Subsequence

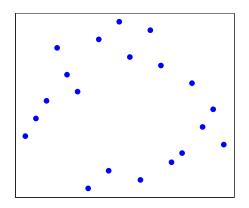


J. E. GARCÍA, V. A. GONZÁLEZ-LÓPEZ, *A Nonparametric Independence Test using Random Permutations*, Preprint, arXiv:0908.2794v2, 2009.

Marcus Vollmer (Greifswald)

Circular Family

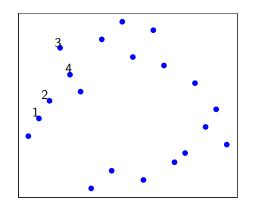
Recent ideas: PompeLE



Recent ideas: PompeLE

Test statistic based on distance to k^{th} successor

 $k = \lfloor \sqrt{n} \rfloor = 4$



B. POMPE, The LE-Statistic: A Versatile Tool in Ordinal Time Series Analysis,

Lecture at 9th AIMS, July 1-5, 2012, Orlando, Florida.

Marcus Vollmer (Greifswald)

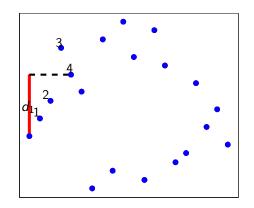
Circular Family

Kraków 07-11-2012 11 / 15

Recent ideas: PompeLE

Test statistic based on distance to k^{th} successor

 $k = \lfloor \sqrt{n} \rfloor = 4$



B. POMPE, The LE-Statistic: A Versatile Tool in Ordinal Time Series Analysis,

Lecture at 9th AIMS, July 1-5, 2012, Orlando, Florida.

Marcus Vollmer (Greifswald)

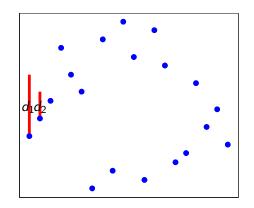
Circular Family

Kraków 07-11-2012

Recent ideas: PompeLE

Test statistic based on distance to k^{th} successor

 $k = \lfloor \sqrt{n} \rfloor = 4$



B. POMPE, The LE-Statistic: A Versatile Tool in Ordinal Time Series Analysis,

Lecture at 9th AIMS, July 1-5, 2012, Orlando, Florida.

Marcus Vollmer (Greifswald)

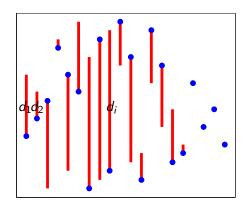
Circular Family

Kraków 07-11-2012

Recent ideas: PompeLE

Test statistic based on distance to k^{th} successor

 $k = \lfloor \sqrt{n} \rfloor = 4$ $L_{yx} = \sum_{i=1}^{n-k} \log d_i$



B. POMPE, The LE-Statistic: A Versatile Tool in Ordinal Time Series Analysis,

Lecture at 9th AIMS, July 1-5, 2012, Orlando, Florida.

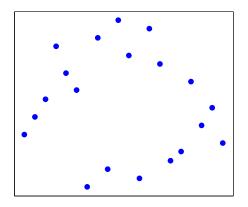
Marcus Vollmer (Greifswald)

Circular Family

Kraków 07-11-2012

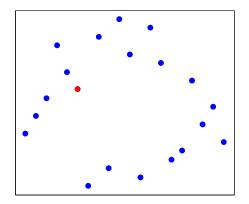
11 / 15

Recent ideas: kNN



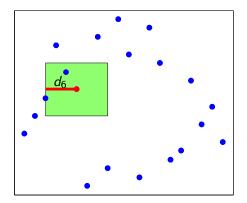
Recent ideas: kNN

$$k = \lfloor \sqrt{n} - \frac{3}{2} \rfloor = 2$$



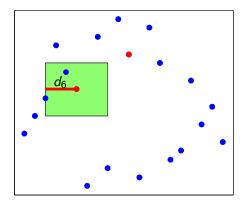
Recent ideas: kNN

$$k = \lfloor \sqrt{n} - \frac{3}{2} \rfloor = 2$$



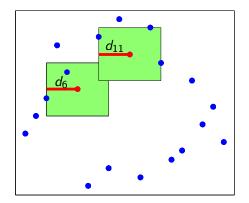
Recent ideas: kNN

$$k = \lfloor \sqrt{n} - \frac{3}{2} \rfloor = 2$$



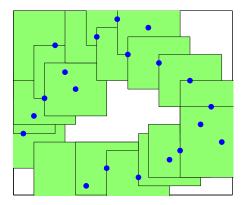
Recent ideas: kNN

$$k = \lfloor \sqrt{n} - \frac{3}{2} \rfloor = 2$$

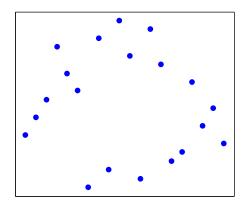


Recent ideas: kNN

$$k = \lfloor \sqrt{n} - \frac{3}{2} \rfloor = 2$$
$$S = \sum_{i=1}^{n} d_i^2$$



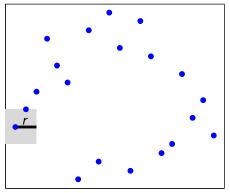
Recent ideas: GRaP



Recent ideas: GRaP

Test statistic based on counting coordinates overlapped by squares

$$r = \lfloor \sqrt{n} - \frac{3}{2} \rfloor = 2$$

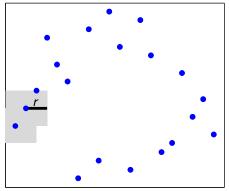


M. VOLLMER, A new Independence Test for continuous variables, Talk at ERCIM'11, December 19, 2011, London, UK.

Recent ideas: GRaP

Test statistic based on counting coordinates overlapped by squares

$$r = \lfloor \sqrt{n} - \frac{3}{2} \rfloor = 2$$



M. VOLLMER, A new Independence Test for continuous variables, Talk at ERCIM'11, December 19, 2011, London, UK.

Marcus Vollmer (Greifswald)

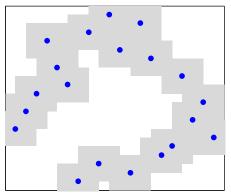
Circular Family

Recent ideas: GRaP

Test statistic based on counting coordinates overlapped by squares

$$r = \lfloor \sqrt{n} - \frac{3}{2} \rfloor = 2$$

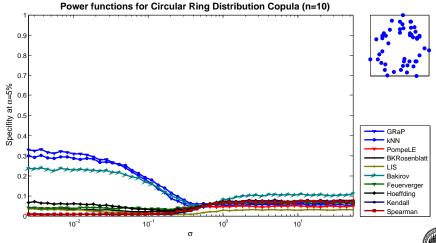
S = Number of (i, j) covered by grey area

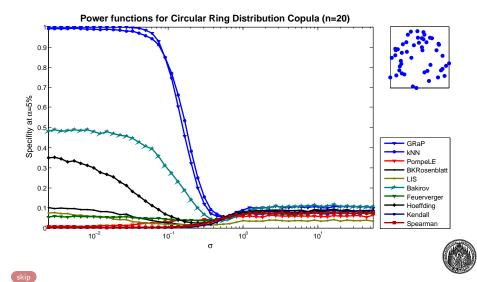


M. VOLLMER, A new Independence Test for continuous variables, Talk at ERCIM'11, December 19, 2011, London, UK.

Marcus Vollmer (Greifswald)

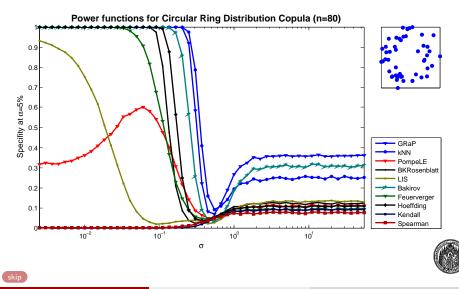
Circular Family







Marcus Vollmer (Greifswald)

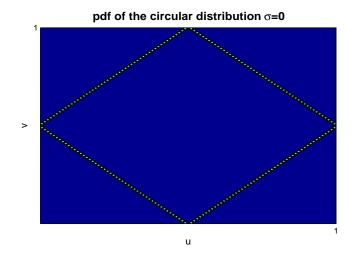


References

Thank you for your kind attention!

R. B. NELSEN, An Introduction to Copulas, ISBN: 978-0-387-28659-4 ,Springer, 2nd. Edition, 2006.

Contour plot of the Circular Distribution Family

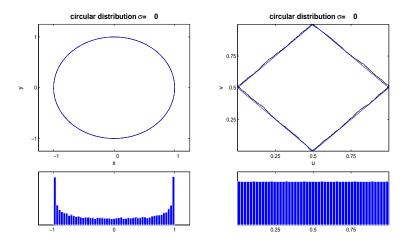


Marcus Vollmer (Greifswald)

Circular Family

Appendix

Scatterplot animation of the family



Appendix

Marginal cdf of the Circular Distribution Family

