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Introduction

Logistic regression is an approved method in the applied re-
search for predicting the outcome of a binary variable using
predictor variables (see Harrell2 and Steyerberg6). Espe-
cially in medical research, logistic regression is a well known
method for predicting the survival of patients or ver-
ifying the therapeutic outcome. If many variables are
involved, it can be difficult to select a good set of relevant
variables, including interactions.
Many publications of critical and intensive care medicine
were analyzed concerning the usage of logistic regression.
Most authors (about 50%) use the in-hospital mortality as
the response variable, about 25% use 28- or 30-day survival.
In some publications, it was not specified, how the multivari-
ate model was generated. Often the multivariate modeling
was performed using the statistically significant univariate
variables (e.g. Nguyen et al.3).

Hierarchical procedures, like the stepwise logistic re-
gression with backward-elimination and forward-
selection are commonly used (Sebat et al.4 or Shapiro
et al.5). The aim of the procedure is to improve an initial
model by adding or removing one predictor (1st Generation).
The limited number of possible models of the 1st generation
are compared using a criterion for model selection, such as
the Bayesian information criterion (BIC). For a model with
k predictor variables and sample size n it is:

BIC = −2 log L(θ̂) + k log n
The initial model will be modified towards the 1st-
generation-model with the lowest BIC value. The "muta-
tion" ends, if no improvement is possible (see chart A be-
low). Nevertheless, stepwise methods have various disad-
vantages6, like instability of the selection and biased esti-
mation of coefficients.

Randomized Model Selection

The classical stepwise regression ends only in a local optimum and depends strongly on the
initial model (see chart A and B).

Randomized Model Selection - heuristic technique & modified stepwise procedure
y Initial model randomly chosen
y Classical stepwise procedure tries to optimize the logistic model until a local optimum is reached
y Only g1 modified models of the first generation are considered
y From each of these g1 models the classical stepwise procedure tries to optimize
y Either the procedure leads to the previous optimum or it ends in some new local optimum
y The best model, concerning the BIC value, will be selected
y If none of the g1 final models provides an improvement, g2 randomly chosen models of the second generation

will be considered
y The procedure ends, unless the l-th generation improves the logistic model

The number of generations l, its sizes g1, . . . , gl and the number of involved variables deter-
mine the computing time.

Modern heuristic techniques are needed
for finding a satisfactory model.

Application to Sepsis data and validation of the new procedure

To rate the performance of the new strategy, we investigate the in-
tensive care unit survival of 746 patients (see Gruendling1) with septic
shock or severe sepsis between 2006 and midyear 2012. In 2008, a
continuous training program of diagnostic measures and treatment was
implemented.

Response Variable: 90-day-survival
Possible Predictors:

– Demographic characteristics (age, gender)
– Septic diagnosis (severeness, focus, SAPSII-Score, APACHEII-Score, lactate, lo-

cation of diagnosis [ICU, IMC/surgery/normal station, Emergency])
– Therapy (preexisting antibiotic administration, adequate primary antibiotic admin-

istration, time to antibiotic administration, taking smear of the focus, crystalloid
administration first 6h and 24h, hydroxyethyl starch first 24h)

– Training program group
Model: Logistic regression with bivariate interactions

Classical stepwise logistic regression with different initial models
were compared with the randomized approach. For the randomized
model selection, 20 randomly chosen models were taken. Each
contains 10 terms. The method proceeds till the fourth generation
([g1, . . . , g4] = [5, 10, 15, 20]). Initial models for the classical
stepwise model selection were the empty model, the model with all
linear terms, half of all possible interaction terms (Interaction) and
three random models including 10, 15 and 20 terms (linear and in-
teraction terms mixed). Both procedures optimize according to the BIC.
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Figure 1 : Predictors of the final models. Filled circles: linear terms. Lines between
circles: interactions. Unfilled circles: appearance only in interactions.

Figure 1 shows, which predictors and interactions are involved in the final
models. Each final model represents a local optimum and illustrates how
different the logistic models can be. The quality of the models is
expressed by the BIC values.

The best model might be the one from the randomized model selec-
tion. It contains five linear terms (SAPSII, APACHEII, focus, lactate,
cristalloid administration first 6h) and two interaction terms involving
the preexisting antibiotic administration.
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Figure 2 : Odds Ratios of the predictors.

For the better interpretation, the linear terms of the interactions were
added to model. In addition the binary variable training program were
added to quantify the outcome of the continuous training program. Fig-
ure 2 shows the corresponding odds.
Bootstrapping (see Steyerberg6, Chapter 5.3) was used to
evaluate the stability of the regression coefficients and of the
AUC value (see figure 3b).
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Figure 3 : Validation of the final model.

Conclusions

! Randomized algorithm was more successful
! Construction ensures to produce better or equivalent models
!Model selection seems to be more stable
! Random initial models can be used for enhancement
! Success of the training program of Sepsisdialog was verified
! Cristalloid administration, part of the therapeutic intervention, re-

duced the mortality.

Briefly
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