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Abstract

Background: This contribution relates to the Phys-
ioNet/CinC Challenge 2014 on Robust Detection of Heart
Beats in Multimodal Data. The aim is to locate heart beats
in continuous long-term data.

Methods: The beat detection system is build up of sev-
eral parts. Preprocessing consists of high pass filtering
followed by standardization. Extrema of a moving win-
dow were used to capture the heart beat impulse. A win-
dowed approach led to dynamic thresholds. Valid parts of
the channels were determined and the locations of beats
were extracted. The beat locations of various channels
were compared during the multichannel fusion procedure
and dynamic delay correction. Doubtful locations were
checked using RR distances.

Results: The algorithm was tested on the training data
set for this challenge (one hundred 10-minute recordings)
and on several freely available PhysioNet databases which
were annotated by physicians. The algorithm had the best
score applied to the hidden Phase I dataset of the 2014
PhysioNet/CinC challenge.

Conclusion: The developed algorithm presents a
promising approach to detect heart beats in multivariate
records.

1. Introduction

Continuous ECG monitoring (electrocardiography) is
widely used in hospitals, especially in critical care units.
QRS complexes are mainly used to compute heart rates or
heart rate variability (HRV). For diagnostic purposes (my-
ocardial infarction, cardiac dysrhythmias, pulmonary em-
bolism) an accurate detection of QRS complexes is impor-
tant. Measurement errors and artifacts can distort the clin-
ical calculation. The use of other channels than ECG e.g.
continuous blood pressure (BP) or photoplethysmograms
(PPG) may help to handle those issues. Beat-by-beat anno-
tation realized by cardiologists is time-consuming and not
appropriate for today’s clinical practice. Physicians need
robust multivariate methods of locating heart beats, which

can be implemented in bedside devices.
A classical approach is the real time QRS detector by

Pan/Tompkins [1], which consists of digital filtering (high-
pass and low-pass), signal transformations and decision
rules. A comprehensive review article about recent meth-
ods is given by Köhler et. al [2] where detectors were
divided into three classes: approaches based on signal
derivatives and digital filters, wavelet-based QRS detec-
tion or filter-bank methods and approaches using neural
networks.

2. QRS detection

A new beat detection system was implemented which
consists of several parts.

2.1. Preprocessing

The signal was downsampled to fs=80Hz to save com-
putation time. Next, a trimmed moving average filter was
applied, which acts as a high pass filter and eliminates both
long wave changes and sudden drop-offs / step-ups which
may occur when the signal strength rapidly changes.

The α%-trimmed moving average (TMA) [7] with win-
dow length w of a time series (xt)t=1,...,n is defined as

TMAi :=
1

w − 2k

w−k∑
j=k+1

x̃j with k =
⌈wα

2

⌉
and

sorted values x̃ of (xt), t ∈
[
i−w

2
, i+

w

2

]
.

(1)

I recommend a trimming value of α=25% and a win-
dow length of wECG=0.2 sec for ECG-like waveforms,
wBP=1.0 sec for BP-like waveforms. TMA filtering was
also used by Chen [8].

Standardization transformed the signal to a dimension-
less waveform of mean 0 and standard deviation 1.

For beat extraction a range filter was used. The range
is the difference between local maximum and local mini-
mum in the neighborhood of a particular time point. The
neighborhood itself is a window of size lECG=0.2 sec for
ECG-like waveforms and lBP=0.4 sec for BP-like wave-
forms. Transformation steps are illustrated in Figure 1.
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Figure 1. Transformation steps of ECG and BP signals.
Top: Raw signal with trimmed moving average (bold line).
Middle: Signal after TMA filtering and standardization.
Bottom: Range filtered signal with smoothed local max-
ima and minima (dashed lines) and threshold (bold line).

2.2. Beat extraction

The range signal (rt) was used to extract the beat po-
sitions. Smoothed local maxima (SLmax) and minima
(SLmin) were computed (dashed lines in Figure 1). SLmax
represents the local amplitude of the signal whereas a high
SLmin value indicates noisy data. Hence, an adaptive
threshold for beat position i was

ri > 0.5(SLmaxi + SLmini) and
ri = ri+1 = . . . = ri+fs/25

as a constancy criterion.
(2)

A new beat position was accepted if there was some j
between two subsequent beats with rj ≤ 0.5(SLmaxj +
SLminj). Noisy parts, where SLmax−SLmin ≤ 0.4, were
kept in a matrix and used for the multivariate fusion part.

2.3. Determine relevant channels

In order to determine whether a channel is suitable for
beat detection, independent of a signal description, a short
30 second subset of the time series was taken. All channels
ran through the procedures described above. Once with
the ECG settings (wECG=0.2 sec, lECG=0.2 sec) and once
with the BP setting ( wBP=1.0 sec, lBP=0.4 sec). Relative
RR distances were computed. The RR interval is the time
between QRS complexes. The ratio of two consecutive RR
intervals is defined as the relative RR interval

relRRi :=
RRi+1

RRi
for i=1, . . ., n− 1. (3)
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Figure 2. Beat extraction: conditions fulfilled for marked
positions. Reference beat positions are shown as vertical
bars.

With a healthy heart the values of relRR alternate between
0.8 and 1.2 and can be considered as heart rate variability.
Hence an effective channel with appropriate setting fulfills

P (relRR ∈ [0.8, 1.2]) ≥ 80%. (4)

This means that the extracted beat positions are well-
regulated and not chaotic. If both settings were appropriate
for the same channel, the channel description (header files)
was used for ECG or BP labeling.

3. Multivariate combination

The careful combination of the channel specific annota-
tions has a strong influence on sensitivity and specificity.

3.1. Dynamic delay correction

Pulse transition time [9] and the delay to other devices
(e.g. EEGs, EMGs), as illustrated in Figure 3, had to be
corrected. The time delay is specific to the device and
its distance to the heart. The arrival time is ”influenced
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Figure 3. Pulse transition time (PTT) of a BP channel.
Total delay obtained by adding the algorithmic delay (AD).

by heart rate, blood pressure changes and the compliance



of the arteries” [10]. Due to the variability of transition
time (see also [11]), one needs a dynamic delay correction
for each channel using a reference ECG electrode. Going
through the described QRS detector the delay is of course
longer than the usual transition time. For ECG electrodes
a static delay of 0.016 sec was assumed (average delay of
R-spike to range filter peak). For channels other than ECG
a static delay of 0.26 sec was assumed when a ECG refer-
ence was missing. Otherwise the time differences to the
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Figure 4. PTT variability. The total delay varies between
320 and 360 ms. The dynamic delay correction is given by
a median filter (bold line).

nearest beat positions of the reference ECG were com-
puted. A dynamic delay correction was given by a median
filter with a 20 sec window size (see Figure 4). The follow-
ing procedures were executed sequentially taking 60 sec
subsets of the revised beat positions.

3.2. Merging beats

The beat positions of the different channel origins was
sorted. A heart beat was declared as ”safe”, if there was
a sequence of positions coming from all channel origins
which were not noisy (see 2.2) and for which the consecu-
tive time differences did not exceed 0.15 sec. The heart
beat annotation was defined as the mean of those posi-
tions. All other individual positions were declared as ”can-
didates”.

3.3. Verifying candidates

There should not be a channel producing more than 70%
of candidates or the number of candidates should not ex-
ceed a limit of 10% of the number of safe beats.
The candidates were approved by using the concept of rel-
ative RR distances. In general, candidates were accepted
whenever gaps between two safe beats were filled appro-
priately. At those positions the relative RR distance func-
tion had peaks as shown in Figure 5. Procedures were
added to handle cases where two or more candidates were
located within two safe beat positions.
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Figure 5. Relative RR distances were used to verify can-
didates.

3.4. Channel dominance and multivariate
subsets

One cannot eliminate the risk of having worse results
when merging beats and verifying candidates. Some-
times the information given by a single channel is
more accurate than the multivariate pasting. The accu-
racy of each single channel was derived from quantile
ranges of the relative RR distances (ra1=q90%−q10% and
ra2=q80%−q20%). All channels ch for which ra1(ch) +
ra2(ch) ≤ 1.2min(ra1 + ra2) build up a new multivari-
ate subset. With respect to these ranges, the best channel
or multivariate set of channels was picked for writing the
annotation file.

4. Performance

The performance was evaluated using freely available
standard databases from PhysioNet [12]. Sensitivity and
positive predictive value are shown in Table 1 for the MIT-
BIH Arrhythmia Database (48 records, 30 minutes each,
two-lead ECGs) [13], ST-T Database of the European So-
ciety of Cardiology (90 records, 2 hours each, two-lead
ECGs) [14], MGH/MF Waveform Database (200 records1,
12 to 86 minutes each, 3-lead ECGs, ABP, PAP, CVP, res-
piration, and airway CO2) [15], MIT-BIH Noise Stress
Test Database (15 records, 30 minutes each, two-lead
ECGs) [16] and the MIT-BIH Polysomnographic Database
(18 records, up to 6.5 hours each, various number of chan-
nels) [17]. Set-p (100 records, 10 minutes each, various
number of channels) was the training database of the Phy-
sioNet/Cinc Challenge 2014.

The evaluation was conducted using MATLAB R2014a
on an Intel i7 processor machine. The pure calculation
time for QRS detection was about 1 second for a 10
minute record. Hard records detected: MIT-BIH Arrhyth-
mia Database (106, 203, 221, 228, 232), European ST-T
(e0604), MGH/MF Waveform Database (040, 072, 074,
075, 120, 122, 130), MIT-BIH Polysomnographic (slp03).

1Only the first 200 records were taken, number 026, 041 and 057 were
excluded.



Table 1. Results on standard databases

Database SE +P
set-p 99.89% 99.93%
MIT-BIH Arrhythmia 98.59% 99.68%
MIT-BIH Noise Stress Test 94.90% 92.02%
European ST-T 99.91% 99.85%
MGH/MF Waveform 98.73% 98.34%
MIT-BIH Polysomnographic 99.90% 99.70%

Noise tolerance was evaluated by the MIT-BIH Noise
Stress Test. Excellent results persist even for a signal-to-
noise ratio of 6 dB (SE: 99.53%, +P: 95.78%) and for 0 dB
(SE: 91.51%, +P: 83.43%). Compared to the robust open-
source algorithm by Zong, Moody and Jiang [18] this is
more resistant against noise.

The following problems were identified: strong T-waves
can cause false positive beats, misplacement by strong P-
Waves and false positive beats in noisy sequences.

5. Conclusions

A new detector of heart beats using multivariate records
is introduced. Some promising concepts for a fast, simple
and robust QRS detection are given.

References

[1] Pan J, Tompkins WJ. A real-time qrs detection algo-
rithm. Biomedical Engineering IEEE Transactions on
March 1985;BME-32(3):230–236. ISSN 0018-9294.

[2] Kohler BU, Hennig C, Orglmeister R. The principles of
software qrs detection. Engineering in Medicine and Bi-
ology Magazine IEEE Jan 2002;21(1):42–57. ISSN 0739-
5175.

[3] Hamilton PS, Tompkins WJ. Quantitative investigation of
qrs detection rules using the mit/bih arrhythmia database.
Biomedical Engineering IEEE Transactions on Dec 1986;
BME-33(12):1157–1165. ISSN 0018-9294.

[4] Szilagyi L, Benyo Z, Szilagyi S, Szlavecz A, Nagy L. On-
line qrs complex detection using wavelet filtering. In Engi-
neering in Medicine and Biology Society, 2001. Proceed-
ings of the 23rd Annual International Conference of the
IEEE, volume 2. ISSN 1094-687X, 2001; 1872–1874 vol.2.

[5] Afonso V, Tompkins WJ, Nguyen T, Luo S. Ecg beat de-
tection using filter banks. Biomedical Engineering IEEE
Transactions on Feb 1999;46(2):192–202. ISSN 0018-
9294.

[6] Hu YH, Tompkins WJ, Urrusti JL, Afonso VX. Appli-
cations of artificial neural networks for ecg signal detec-
tion and classification. Journal of electrocardiology 1993;
26:66–73.

[7] Bednar J, Watt T. Alpha-trimmed means and their rela-
tionship to median filters. Acoustics Speech and Signal
Processing IEEE Transactions on Feb 1984;32(1):145–153.
ISSN 0096-3518.

[8] Chen SW. A nonlinear trimmed moving averaging-based
system with its application to real-time qrs beat classifi-
cation. Journal of Medical Engineering amp Technology
2007;31(6):443–449.

[9] Smith RP, Argod J, Pepin JL, Levy PA. Pulse transit time:
an appraisal of potential clinical applications. Thorax 1999;
54(5):452–457.

[10] Drinnan MJ, Allen J, Murray A. Relation between heart
rate and pulse transit time during paced respiration. Physi-
ological Measurement 2001;22(3):425.

[11] Gil E, Bailon R, Vergara JM, Laguna P. Ptt variability for
discrimination of sleep apnea related decreases in the am-
plitude fluctuations of ppg signal in children. Biomedical
Engineering IEEE Transactions on May 2010;57(5):1079–
1088. ISSN 0018-9294.

[12] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM,
Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK,
Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet:
Components of a new research resource for complex phys-
iologic signals. Circulation 2000 (June 13);101(23):e215–
e220.

[13] Moody G, Mark R. The impact of the mit-bih arrhythmia
database. Engineering in Medicine and Biology Magazine
IEEE May 2001;20(3):45–50. ISSN 0739-5175.

[14] Taddei A, Distante G, Emdin M, Pisani P, Moody GB, Zee-
lenberg C, Marchesi C. The european st-t database: stan-
dard for evaluating systems for the analysis of st-t changes
in ambulatory electrocardiography. European Heart Journal
1992;13(9):1164–1172.

[15] Welch J, Ford P, Teplick R, Rubsamen R. The mas-
sachusetts general hospital-marquette foundation hemody-
namic and electrocardiographic database–comprehensive
collection of critical care waveforms. Clinical Monitoring
1991;7(1):96–97.

[16] Moody GB, Muldrow W, Mark RG. A noise stress test
for arrhythmia detectors. Computers in Cardiology 1984;
11(3):381–384.

[17] Ichimaru Y, Moody G. Development of the polysomno-
graphic database on cd-rom. Psychiatry and Clinical Neu-
rosciences 1999;53(2):175–177. ISSN 1440-1819.

[18] Zong W, Moody G, Jiang D. A robust open-source algo-
rithm to detect onset and duration of qrs complexes. In
Computers in Cardiology, 2003. ISSN 0276-6547, Sept
2003; 737–740.

Address for correspondence:

Marcus Vollmer
Institut für Mathematik und Informatik / Universtität Greifswald
Walther-Rathenau-Str. 47 / 17487 Greifswald / Germany
marcus.vollmer@uni-greifswald.de


