Robust Detection of Heart Beats using Dynamic Thresholds and Moving Windows

Marcus Vollmer

University of Greifswald Greifswald, Germany

Background: This contribution relates to the *PhysioNet/CinC Challenge* 2014 on Robust Detection of Heart Beats in Multimodal Data. The aim is to locate heart beats in continuous long-term data.

Methods: The beat detection system consists of several parts. The preprocessing consists of a non-linear trimmed moving average filter for high pass filtering and standardization. Extrema of a moving window were used to capture the heart beat impulse. A windowed approach led to dynamic thresholds. Valid parts of the channels were determined and the location of beats were extracted. Followed by a dynamic delay correction for other channels than ECG, the beat locations of various channels were compared during the multichannel fusion proce-

Exemplary beat extraction process.

dure. Doubtful locations were checked using RR distances.

Results: The preliminary algorithm was tested on the training data set for this challenge (composed of one hundred 10-minute recordings with various numbers of channels) and on the freely available MIT-BIH arrhythmia

	*		-
Division	Se	PPV	Overall
Training	99.94%	99.73%	99.84%
MIT-BIH	99.06%	99.68%	99.37%
Phase I	93.44%	93.76%	93.20%

Performance	of the	preliminary	algorithm
	· · · · · · ·	PI • IIIIII	

database (forty eight 30-minute excerpts of two-channel ambulatory ECG recordings). The preliminary algorithm scored 93.20 applied to the hidden Phase I dataset of the 2014 PhysioNet challenge.

Conclusion: The developed algorithm presents a promising approach to detect heart beats in multivariate records.