

DZHK DEUTSCHES ZENTRUM FÜR HERZ-KREISLAUF-FORSCHUNG E.V.

Alignment of Multi-Sensored Data: Adjustment of Sampling Frequencies and Time Shifts

Marcus Vollmer^{1,2}, Dominic Bläsing³, Lars Kaderali^{1,2} ¹ Institute of Bioinformatics, University Medicine Greifswald, Germany ² German Centre for Cardiovascular Research (DZHK), Greifswald, Germany ³ Institute of Psychology, University of Greifswald, Germany

11 September 2019, CinC Singapore

1 Experimental Data

2 Adjustment of Time Shifts

3 Correction of Sampling Frequencies

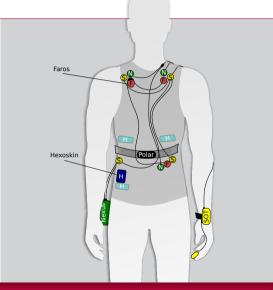
Adjustment of Sampling Frequencies and Time Shifts | Marcus Vollmer

1. Experimental Data

1. Experimental Data Research Team

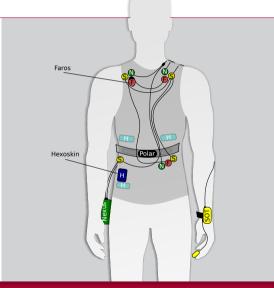
Adjustment of Sampling Frequencies and Time Shifts | Marcus Vollmer

1. Experimental Data Experimental Setup

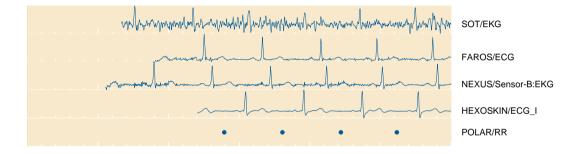

- 🕨 5 min standing rest
- 5 min walking on treadmill (1.2 m/s)
- cognitive test
 (2-back audio test)
- 5 min walking on treadmill (1.2 m/s, 15% gradient)

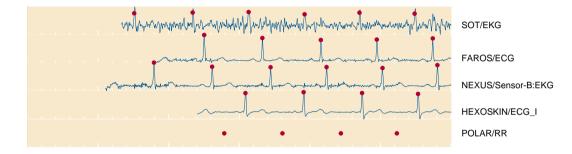
In between: NASA Task Load Index to measure individual strain

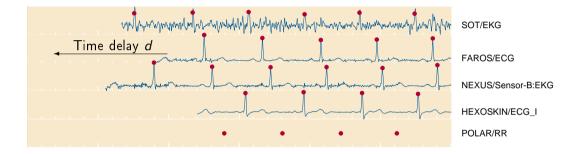
Adjustment of Sampling Frequencies and Time Shifts | Marcus Vollmer

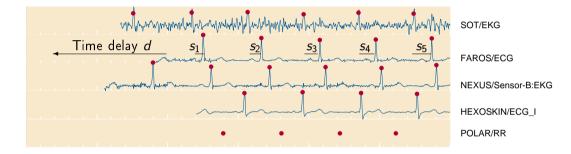

1. Experimental Data Experimental Setup

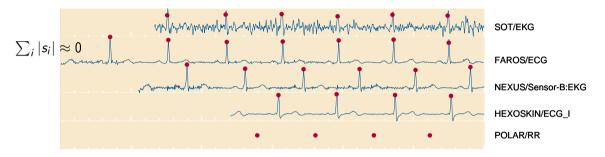
- EMotion Faros 360° | 1000 Hz
- SOMNOtouch NIBP | 512 Hz
- NeXus-10 MKII | 8192 Hz
- 🕨 Polar RS800 Multi | 1000 Hz
- Hexoskin Smart Shirt Hx1 | 256 Hz

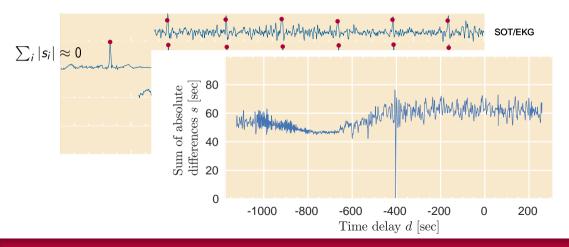


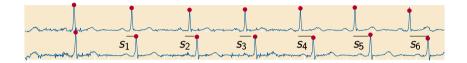

1. Experimental Data Experimental Setup

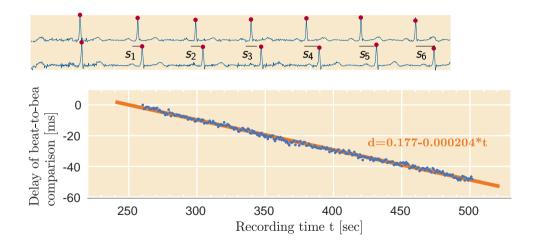

- EMotion Faros 360° | 1000 Hz
- SOMNOtouch NIBP | 512 Hz
- NeXus-10 MKII | 8192 Hz 8000 Hz
- 🕨 Polar RS800 Multi | 1000 Hz
- Hexoskin Smart Shirt Hx1 | 256 Hz



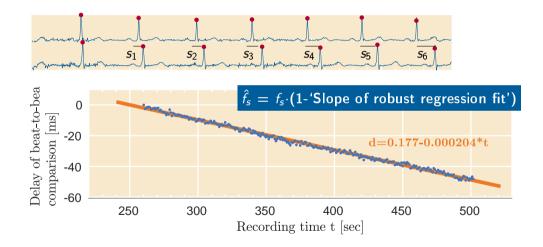

2. Adjustment of Time Shifts






Adjustment of Sampling Frequencies and Time Shifts | Marcus Vollmer

Linear Adjustment of Sampling Frequencies



Pairwise differences s_i are linear decreasing or increasing with time

Linear Adjustment of Sampling Frequencies

Linear Adjustment of Sampling Frequencies

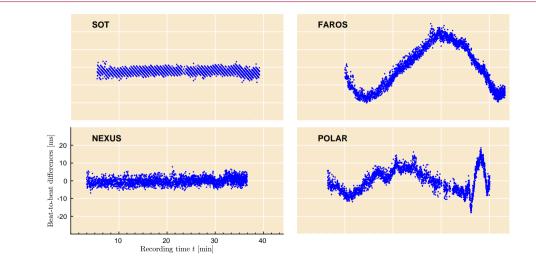
3. Correction of Sampling Frequencies Linear Adjustment Factors

Manufacturer's specifications and actual sampling frequency (Hexoskin assumed to be have precise f_s). Two Faros' devices in use, \hat{f}_s splitted according to device ID.

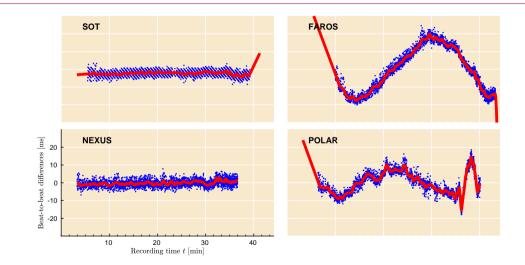
Recording Device	f _s	Mean \hat{f}_s	min	max
SomnoTOUCH NIBP	512	511.97	511.97	511.97
NeXus-10 MKII	8000	7999.67	7999.67	7999.68
eMotion Faros 360°, ID1	1000	1000.29	1000.19	1000.36
eMotion Faros 360°, ID2	1000	1000.18	1000.15	1000.21
Polar RS800 Multi	1000	999.91	999.87	999.95

3. Correction of Sampling Frequencies Linear Adjustment Factors

Manufacturer's specifications and actual sampling frequency (Hexoskin assumed to be have precise f_s). Two Faros' devices in use, \hat{f}_s splitted according to device ID.


Recording Device	f _s	Mean \hat{f}_s	min	max	
SomnoTOUCH NIBP	512	511.97	511.97	511.97	constant
NeXus-10 MKII	8000	7999.67	7999.67	7999.68	constant
eMotion Faros 360°, ID1	1000	1000.29	1000.19	1000.36	
eMotion Faros 360°, ID2	1000	1000.18	1000.15	1000.21	
Polar RS800 Multi	1000	999.91	999.87	999.95	

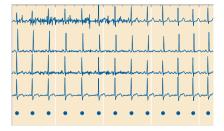
3. Correction of Sampling Frequencies Linear Adjustment Factors


Manufacturer's specifications and actual sampling frequency (Hexoskin assumed to be have precise f_s). Two Faros' devices in use, \hat{f}_s splitted according to device ID.

Recording Device	f _s	Mean \hat{f}_s	min	max		
SomnoTOUCH NIBP	512	511.97	511.97	511.97	constant	
NeXus-10 MKII	8000	7999.67	7999.67	7999.68	constant	
eMotion Faros 360°, ID1	1000	1000.29	1000.19	1000.36	fluctuatio	ns
eMotion Faros 360°, ID2	1000	1000.18	1000.15	1000.21	fluctuatio	ns
Polar RS800 Multi	1000	999.91	999.87	999.95	fluctuatio	ns

Is a linear adjustment sufficient?

Is a linear adjustment sufficient?


3. Correction of Sampling Frequencies Benefits from multi-sensor data

Well aligned signals

3. Correction of Sampling Frequencies Benefits from multi-sensor data

Well aligned signals

- Quality assurance
- Increased confidence
- Backup signals (low signal quality, signal loss)
- Use of full signal variety (body movement, temperature, respiration)

3. Correction of Sampling Frequencies Benefits from multi-sensor data

Well aligned signals

- Quality assurance
- Increased confidence
- Backup signals (low signal quality, signal loss)
- Use of full signal variety (body movement, temperature, respiration)
- Comparison of signal quality
- Extraction of realistic noise
- Verification/accuracy of sampling frequency

3. Correction of Sampling Frequencies ${\displaystyle { Summary - Workflow}}$

Correction of time shifts	by RR interval sequence alignment (300 Intervals from resting state)
Frequency correction	Slope of aligned beat differences transformed into adjustment factor
Expert annotation	Accurate annotation of beats for the reference device
Non-linear resampling	Robust quadratic regression to fit beat misplacements for the entire period Relocation of beats an linear interpolation

Resampling

of interbeat segments

Adjustment of Sampling Frequencies and Time Shifts | Marcus Vollmer

Happy to discuss at Poster 52

4th Floor Foyer: 12:00-14:00