Universitätsmedizin

PhysioNet CinC Challenge 2019 Early Prediction of Sepsis from Clinical Data

Marcus Vollmerr¹, Christian F. Luz², Philipp Sodmann¹, Bhanu Sinha², Sven-Olaf Kuhn ${ }^{3}$
${ }^{1}$ Institute of Bioinformatics, University Medicine Greifswald, Germany
${ }^{2}$ Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, The Netherlands
${ }^{3}$ Department of Anesthesiology and Intensive Care Medicine, University Medicine Greifswald, Germany

11 September 2019, CinC Singapore

Content

1 The challenge - the data
2 From data cleaning to feature generation

3 Training of time-specific metalearners

4 Results

1. The challenge - the data

Challenge description

$20^{\text {th }}$ PhysioNet Computing in Cardiology Challenge - comarase

Objective

"The goal [...] is the early detection of sepsis using physiological data. [..] we define sepsis according to the Sepsis-3 guidelines, i.e., a two-point change in the patient's Sequential Organ Failure Assessment (SOFA) score and clinical suspicion of infection [...]."

- Designing and implementation of a working, open-source algorithm
- Automatically identify a patient's risk of sepsis and make a positive or negative prediction of sepsis for every time interval based only on the clinical data
- Team with best predictions for the patients in the hidden test set wins

Vital signs
Laboratory values

Demographics
Outcome

Training dataset

40,336 patient ids | $1,552,210$ dates | 2,932 sepsis patients
HR, 02Sat, Temp, SBP, MAP, DBP, Resp, EtCO2
BaseExcess, HCO3, FiO2, pH, PaCO2, Sa02, AST, BUN, Alkalinephos, Calcium, Chloride, Creatinine, Bilirubin_direct, Glucose, Lactate, Magnesium, Phosphate, Potassium, Bilirubin_total, Troponinl, Hct, Hgb, PIT, WBC, Fibrinogen, Platelets
Age, Gender, Unit1 (MICU), Unit2 (SICU), HospAdmTime, ICULOS
SepsisLabel For sepsis patients, SepsisLabel is 1 if $t \geq t_{\text {seppsis }}-6$ and 0 if $t<t_{\text {seppis }}-6$. For non-sepsis patients, SepsisLabel is 0 .

Data Insight

Training files are available as delimitered csv files:

HR	02Sat	Temp	...	Hospadmitime	ICULOS	Sepsistabel
NaN	NaN	NaN	...	-50	1	
86	98	NaN	...	-50	2	0
75	NaN	NaN	...	-50	3	1
99	100	35.5	...	-50	4	1

For data screening to manually revisit false predictions we implemented an interactive Sepsis Challenge
Patient Explorer cosme mimeramer with R Shiny.

ICU Length of Stay

All patients

ICU Length of Stay

Sepsis patients

ICU Length of Stay

Sepsis ratio

Challenge Scoring

The early prediction of sepsis is potentially life-saving, and we challenge participants to predict sepsis $\mathbf{6}$ hours before the clinical prediction of sepsis. The utility function rewards early predictions and penalizes late predictions as well as false alarms. Late prediction of sepsis is potentially life-threatening. Predicting sepsis in non-sepsis patients (or predicting sepsis very early in sepsis patients) consumes limited hospital resources.

Challenge Scoring

The early prediction of sepsis is potentially life-saving, and we challenge participants to predict sepsis $\mathbf{6}$ hours before the clinical prediction of sepsis. The utility function rewards early predictions and penalizes late predictions as well as false alarms. Late prediction of sepsis is potentially life-threatening. Predicting sepsis in non-sepsis patients (or predicting sepsis very early in sepsis patients) consumes limited hospital resources.

Challenge Scoring

The early prediction of sepsis is potentially life-saving, and we challenge participants to predict sepsis $\mathbf{6}$ hours before the clinical prediction of sepsis. The utility function rewards early predictions and penalizes late predictions as well as false alarms. Late prediction of sepsis is potentially life-threatening. Predicting sepsis in non-sepsis patients (or predicting sepsis very early in sepsis patients) consumes limited hospital resources.

Challenge Scoring

- Each prediction (each line in the data file) will be scored by the utility function $U(s, t)$ (patient s, time interval t):

$$
U(s, t)= \begin{cases}\text { UTPP }(s, t), & \text { positive prediction at time } t \text { for sepsis patient } s \tag{1}\\ \text { UFN }(s, t), & \text { positive prediction at time } t \text { for non-sepsis patient } s \\ \text { UFP }(s, t), & \text { negative prediction at time } t \text { for sepsis patient } s \\ \text { UTN }(s, t), & \text { negative prediction at time } t \text { for non-sepsis patient } s\end{cases}
$$

- Score for a classifier:

$$
\begin{equation*}
U_{\text {total }}=\sum_{s \in S} \sum_{t \in T(s)} U(s, t) \tag{2}
\end{equation*}
$$

- Normalized classifier score:

$$
\begin{equation*}
U_{\text {normalized }}=\frac{U_{\text {total }}-U_{\text {no predictions }}}{U_{\text {optimal }}-U_{\text {no predictions }}} \tag{3}
\end{equation*}
$$

2. From data cleaning to feature generation

Data Cleaning

Vitals and lab values were screened for physiological plausibility

2263 values (mainly within blood pressure variables, respiration rate and oxygen levels) removed

```
clean_vars <- function(x) {
    x %>%
    mutate(hr = if_else(hr > 180, NA_real_, hr),
        o2sat = if_else(o2sat < 50, NA_real_, o2sat),
        temp = if_else(temp < 32 | temp > 43, NA_real_, temp),
        map = if_else(map > 200, NA_real_, map),
        dbp = if_else(dbp > 150, NA_real_, dbp),
        resp = if_else(resp > 50, NA_real_, resp),
        base_excess = if_else(base_excess < -30 | base_excess > 30, NA_real_, base_excess),
        hco3 = if_else(hco3 < 10 | hco3 > 50, NA_real_, hco3),
        fi_o2 = if_else(fi_o2 > 100, NA_real_, fi_o2),
        sa_o2 = if_else(sa_o2 < 50, NA_real_, sa_o2),
        chloride = if_else(chloride < 70 | chloride > 145, NA_real_, chloride),
        potassium = if_else(potassium > 10, NA_real_, potassium),
        hct = if_else(hct < 15 | hct > 70, NA_real_, hct),
        platelets = if_else(platelets > 1000, NA_real_, platelets),
        ventilated = if_else(!is.na(et_co2), TRUE, FALSE))
}
```


Rhythms of Data Availability

Identification of data availability rhythm from remaining 12,036,860 values

vars	no	$n 1$	n2	n3	q0	4	q2
hr	1398740	87915	8904	6524	0.90	0.96	0.96
02sat	1349202	94193	13086	9352	0.87	0.93	0.94
temp	525111	56587	49411	160226	0.34	0.37	0.41
sbp	1325945	97290	1865	8200	0.85	0.92	0.92
map	1358496	99527	11949	6842	0.88	0.94	0.95
dbp	1065282	68661	9376	7266	0.69	0.73	0.74
resp	1313516	100718	15486	10159	0.85	0.91	0.92
et_co2	57636	3407	562	367	0.04	0.04	0.04

- Implementation of rolling windows of 6, 12,24 and 48 hours for frequently repeated features: heart rate, oxygen saturation, temperature, systolic/diastolic/mean atrial blood pressure,

respiration rate and serum glucose

Compute quantiles, quantile ranges, and differences and quotients to the actual value:
Quantiles ($0.05,0.10,0.25,0.50,0.75,0.90,0.95$) represents the course of a disease without outliers

ICULOS	1	2	3	4	5	6	7	8	9	10
map_raw	75.3	86.0		91.3		77.0	76.3	88.3	87.3	
map_roll.t6.p50	75.3	80.7	80.7	86.0	86.0	81.5	81.5	82.7	87.3	
map_roll.t6.p75	75.3	83.3	83.3	88.7	88.7	87.3	87.3	89.1	88.3	

Last observation carried forward method copies last available lab or vital values to the next dates if new data is missing

- Close to the medical perspective of decision making (lab values from blood samples are usually measured unsteadily)

ICULIOS	1	2	3	4	5	6	7	8	9

- Introducing binary variables to indicate whether the values were carry-forwarded
- introducing numerical variables showing the up-to-dateness such that machine learning models are able to learn the relevance of out-dated variables (0 means newly measured, 6 means measured 6 hours ago)

ICULLOS	1	2	3	4	5	6	7	8	9	10
map_raw		75.3	86.0		91.3		77.0	76.3	88.3	87.3
map_LOCF		75.3	86.0	86.0	91.3	91.3	77.0	76.3	88.3	87.3
map_miss	T	F	F	T	F	T	F	F	F	F
map_mis__val	NA	0	0	1	0	1	0	0	0	0

ShockIndex (hr/sbp)
qSOFA (sbp and resp)

- SOFA and partial SOFA scores (respiration, renal function, platelets, liver function, sofa_renal, sofa_plate, mean arterial pressure), SOFA from worst 24 h partial scores
- SIRS scores, SIRS criteria, worst 24h SIRS score, SIRS criteria with hard temperature thresholds,
- NEWS and partial NEWS scores
(respiration, oxygen saturation, systolic blood pressure, pulse rate, temperature)
- $\mathbf{~}$ NEWS uses linear regression
(gender, age, NEWS, log(resp), temp, log(sbp), log(dpb), log(hr), o2sat, 02support)
- Rolling versions using robust measures
qSOFA_t6 uses 25% and 75% quantiles of last 6 h
shockIndex_t6 uses 25% and 75% quantiles of last 6 h
SIRS_t24 and partial scores uses 25%, 75% quantiles for temperature and 90% quantiles of last 24 h for heart rate and respiratory rate
NEWS_t6 uses 50% quantiles of respiratory rate, heart rate and systolic bp of last 6 h

- Size of the tibble is now $1,552,210 \times 427 \approx 578$ MB

3. Training of time-specific metalearners

The H2O software provides a stacked ensemble implementation for Python, R, and Spark

Ensemble Learning with H20.ai

The optimal H2O parameter setting was identified (stopping metric, feature set, balancing)

Binary classification, 5 -fold cross-validation, logloss stopping metric, class-sampling (.1,2)

The optimal threshold for utility maximization was identified

Ensemble Learning with H20.ai

Threshold

Binary classification

Contra using all the data:

- Long-stay patients over-represented
- Redundant data
- Mixing home-acquired, hospital-acquired and ICU-acquired sepsis
- Spectrum of pathogens and source of infection changes
- Long-stay patients are usually subject to a higher exposure to develop sepsis

Contra using all the data:

- Long-stay patients over-represented
- Redundant data
- Mixing home-acquired, hospital-acquired and ICU-acquired sepsis
- Spectrum of pathogens and source of infection changes
- Long-stay patients are usually subject to a higher exposure to develop sepsis

SE: ICU LOS <6

Trained on admission values (<20 NA)
SE: ICU LOS >48
Trained on data(ICULOS > 48)

SE: ICU LOS = 6

Trained on data($1 \leq$ ICULOS ≤ 12)
SE: ICU LOS = 7
Trained on data($1 \leq$ ICULOS ≤ 13)

SE: ICU LOS = 48

Trained on data $(42 \leq$ ICULOS $\leq 54)$
4. Results

How Stable is the Thresholding?

aml.complete
XGBoost_1_AutoML_20190822_203203

aml.t36

aml.t12

aml.t48

aml.t24

aml.t49

LOS-specific Utility Scores

LOS-specific Utility Scores

LOS-specific Utility Scores

LOS-specific Utility Scores

Which Variables are Important?

Which Variables are Important?

t36

t48

t24

t49

Happy to discuss at Poster 52 ， 12：00－14：00

Universitätsmedizin

SEPSIS
 DIALOG

university of groningen

